Extract glyph information from font data, and translate the outline curves to flattened paths or tessellated polygons. The converted data is returned as a data.frame in easy-to-plot format.
Expression profiling using microarray technology to prove if Hypoxia Promotes Efficient Differentiation of Human Embryonic Stem Cells to Functional Endothelium by Prado-Lopez et al. (2010) Stem Cells 28:407-418. Full data available at Gene Expression Omnibus series GSE37761.
This package provides a tool that makes estimating models in state space form a breeze. See "Time Series Analysis by State Space Methods" by Durbin and Koopman (2012, ISBN: 978-0-19-964117-8) for details about the algorithms implemented.
This app enables interactive validation, interpretation and visualization of structural topic models from the stm package by Roberts and others (2014) <doi:10.1111/ajps.12103>. It also includes helper functions for model diagnostics and extracting data from effect estimates.
Fast single trait Genome Wide Association Studies (GWAS) following the method described in Kang et al. (2010), <doi:10.1038/ng.548>. One of a series of statistical genetic packages for streamlining the analysis of typical plant breeding experiments developed by Biometris.
Estimate the four parameters of stable laws using maximum likelihood method, generalised method of moments with finite and continuum number of points, iterative Koutrouvelis regression and Kogon-McCulloch
method. The asymptotic properties of the estimators (covariance matrix, confidence intervals) are also provided.
Parameter estimation for stochastic volatility models using maximum likelihood. The latent log-volatility is integrated out of the likelihood using the Laplace approximation. The models are fitted via TMB (Template Model Builder) (Kristensen, Nielsen, Berg, Skaug, and Bell (2016) <doi:10.18637/jss.v070.i05>).
A streamgraph is a type of stacked area chart. It represents the evolution of a numeric variable for several groups. Areas are usually displayed around a central axis, and edges are rounded to give a flowing shape. This package provides an htmlwidget
for building streamgraph visualizations.
This package provides a step-down procedure for controlling the False Discovery Proportion (FDP) in a competition-based setup, implementing Dong et al. (2020) <arXiv:2011.11939>
. Such setups include target-decoy competition (TDC) in computational mass spectrometry and the knockoff construction in linear regression.
The package is used for calibrating the design parameters for single-to-double arm transition design proposed by Shi and Yin (2017). The calibration is performed via numerical enumeration to find the optimal design that satisfies the constraints on the type I and II error rates.
This package provides a convenient interface to the staticrypt by Robin Moisson <https://github.com/robinmoisson/staticrypt>---'Node.js package for adding a password protection layer to static HTML pages. This package can be integrated into the post-render process of quarto documents to secure them with a password.
Download data from StatsWales
into R. Removes the need for the user to write their own loops when parsing data from the StatsWales
API. Provides functions for datasets (<http://open.statswales.gov.wales/en-gb/dataset>) and metadata (<http://open.statswales.gov.wales/en-gb/discover/metadata>) endpoints.
This package provides a collection of functions to search and download street view imagery ('Mapilary <https://www.mapillary.com/developer/api-documentation>) and to extract, quantify, and visualize visual features. Moreover, there are functions provided to generate Qualtrics survey in TXT format using the collection of street views for various research purposes.
This is a compilation of my preferred themes and related theme elements for ggplot2'. I believe these themes and theme elements are aesthetically pleasing, both for pedagogical instruction and for the presentation of applied statistical research to a wide audience. These themes imply routine use of easily obtained/free fonts, simple forms of which are included in this package.
Offers a comprehensive approach for analysing stratified 2x2 contingency tables. It facilitates the calculation of odds ratios, 95% confidence intervals, and conducts chi-squared, Cochran-Mantel-Haenszel, Mantel-Haenszel, and Breslow-Day-Tarone tests. The package is particularly useful in fields like epidemiology and social sciences where stratified analysis is essential. The package also provides interpretative insights into the results, aiding in the understanding of statistical outcomes.
Manipulating input and output files of the STICS crop model. Files are either JavaSTICS
XML files or text files used by the model fortran executable. Most basic functionalities are reading or writing parameter names and values in both XML or text input files, and getting data from output files. Advanced functionalities include XML files generation from XML templates and/or spreadsheets, or text files generation from XML files by using xslt transformation.
Download, navigate and analyse the Student-Life dataset. The Student-Life dataset contains passive and automatic sensing data from the phones of a class of 48 Dartmouth college students. It was collected over a 10 week term. Additionally, the dataset contains ecological momentary assessment results along with pre-study and post-study mental health surveys. The intended use is to assess mental health, academic performance and behavioral trends. The raw dataset and additional information is available at <https://studentlife.cs.dartmouth.edu/>.
This package provides methods for inference using stacked multiple imputations augmented with weights. The vignette provides example R code for implementation in general multiple imputation settings. For additional details about the estimation algorithm, we refer the reader to Beesley, Lauren J and Taylor, Jeremy M G (2020) â A stacked approach for chained equations multiple imputation incorporating the substantive modelâ <doi:10.1111/biom.13372>, and Beesley, Lauren J and Taylor, Jeremy M G (2021) â Accounting for not-at-random missingness through imputation stackingâ <arXiv:2101.07954>
.
This package provides a pilot matching design to automatically stratify and match large datasets. The manual_stratify()
function allows users to manually stratify a dataset based on categorical variables of interest, while the auto_stratify()
function does automatically by allocating a held-aside (pilot) data set, fitting a prognostic score (see Hansen (2008) <doi:10.1093/biomet/asn004>) on the pilot set, and stratifying the data set based on prognostic score quantiles. The strata_match()
function then does optimal matching of the data set in parallel within strata.
This package provides tools for testing, monitoring and dating structural changes in (linear) regression models. It features tests/methods from the generalized fluctuation test framework as well as from the F test (Chow test) framework. This includes methods to fit, plot and test fluctuation processes (e.g., CUSUM, MOSUM, recursive/moving estimates) and F statistics, respectively. It is possible to monitor incoming data online using fluctuation processes. Finally, the breakpoints in regression models with structural changes can be estimated together with confidence intervals. Emphasis is always given to methods for visualizing the data.
Data in multidimensional systems is obtained from operational systems and is transformed to adapt it to the new structure. Frequently, the operations to be performed aim to transform a flat table into a star schema. Transformations can be carried out using professional extract, transform and load tools or tools intended for data transformation for end users. With the tools mentioned, this transformation can be carried out, but it requires a lot of work. The main objective of this package is to define transformations that allow obtaining stars from flat tables easily. In addition, it includes basic data cleaning, dimension enrichment, incremental data refresh and query operations, adapted to this context.
This package provides a lightweight tool that provides a reproducible workflow for selecting and executing appropriate statistical analysis in one-way or two-way experimental designs. The package automatically checks for data normality, conducts parametric (ANOVA) or non-parametric (Kruskal-Wallis) tests, performs post-hoc comparisons with Compact Letter Displays (CLD), and generates publication-ready boxplots, faceted plots, and heatmaps. It is designed for researchers seeking fast, automated statistical summaries and visualization. Based on established statistical methods including Shapiro and Wilk (1965) <doi:10.2307/2333709>, Kruskal and Wallis (1952) <doi:10.1080/01621459.1952.10483441>, Tukey (1949) <doi:10.2307/3001913>, Fisher (1925) <ISBN:0050021702>, and Wickham (2016) <ISBN:978-3-319-24277-4>.
Statistical performance measures used in the econometric literature to evaluate conditional covariance/correlation matrix estimates (MSE, MAE, Euclidean distance, Frobenius distance, Stein distance, asymmetric loss function, eigenvalue loss function and the loss function defined in Eq. (4.6) of Engle et al. (2016) <doi:10.2139/ssrn.2814555>). Additionally, compute Eq. (3.1) and (4.2) of Li et al. (2016) <doi:10.1080/07350015.2015.1092975> to compare the factor loading matrix. The statistical performance measures implemented have been previously used in, for instance, Laurent et al. (2012) <doi:10.1002/jae.1248>, Amendola et al. (2015) <doi:10.1002/for.2322> and Becker et al. (2015) <doi:10.1016/j.ijforecast.2013.11.007>.
This package provides an efficient method to recover the missing block of an approximately low-rank matrix. Current literature on matrix completion focuses primarily on independent sampling models under which the individual observed entries are sampled independently. Motivated by applications in genomic data integration, we propose a new framework of structured matrix completion (SMC) to treat structured missingness by design [Cai T, Cai TT, Zhang A (2016) <doi:10.1080/01621459.2015.1021005>]. Specifically, our proposed method aims at efficient matrix recovery when a subset of the rows and columns of an approximately low-rank matrix are observed. The main function in our package, smc.FUN()
, is for recovery of the missing block A22 of an approximately low-rank matrix A given the other blocks A11, A12, A21.