Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Portfolio optimization and analysis routines and graphics.
Evaluate the predictive performance of an existing (i.e. previously developed) prediction/ prognostic model given relevant information about the existing prediction model (e.g. coefficients) and a new dataset. Provides a range of model updating methods that help tailor the existing model to the new dataset; see Su et al. (2018) <doi:10.1177/0962280215626466>. Techniques to aggregate multiple existing prediction models on the new data are also provided; see Debray et al. (2014) <doi:10.1002/sim.6080> and Martin et al. (2018) <doi:10.1002/sim.7586>).
Includes a collection of functions presented in "Measuring stability in ecological systems without static equilibria" by Clark et al. (2022) <doi:10.1002/ecs2.4328> in Ecosphere. These can be used to estimate the parameters of a stochastic state space model (i.e. a model where a time series is observed with error). The goal of this package is to estimate the variability around a deterministic process, both in terms of observation error - i.e. variability due to imperfect observations that does not influence system state - and in terms of process noise - i.e. stochastic variation in the actual state of the process. Unlike classical methods for estimating variability, this package does not necessarily assume that the deterministic state is fixed (i.e. a fixed-point equilibrium), meaning that variability around a dynamic trajectory can be estimated (e.g. stochastic fluctuations during predator-prey dynamics).
Provision of a set of models and methods for use in the allocation and management of capital in financial portfolios.
An efficient data integration method is provided for multiple spatial transcriptomics data with non-cluster-relevant effects such as the complex batch effects. It unifies spatial factor analysis simultaneously with spatial clustering and embedding alignment, requiring only partially shared cell/domain clusters across datasets. More details can be referred to Wei Liu, et al. (2023) <doi:10.1038/s41467-023-35947-w>.
An R package for polygenic trait analysis.
Data are partitioned (clustered) into k clusters "around medoids", which is a more robust version of K-means implemented in the function pam() in the cluster package. The PAM algorithm is described in Kaufman and Rousseeuw (1990) <doi:10.1002/9780470316801>. Please refer to the pam() function documentation for more references. Clustered data is plotted as a split heatmap allowing visualisation of representative "group-clusters" (medoids) in the data as separated fractions of the graph while those "sub-clusters" are visualised as a traditional heatmap based on hierarchical clustering.
These are harmonized datasets produced as part of the Clinical Trials Network (CTN) protocol number 0094. This is a US National Institute of Drug Abuse (NIDA) funded project; to learn more go to <https://ctnlibrary.org/protocol/ctn0094/>. These are datasets which have the data harmonized from CTN-0027 (<https://ctnlibrary.org/protocol/ctn0027/>), CTN-0030 (<https://ctnlibrary.org/protocol/ctn0030/>), and CTN-0051 (<https://ctnlibrary.org/protocol/ctn0051/>).
Conservation planning datasets for learning how to use the prioritizr package <https://CRAN.R-project.org/package=prioritizr>.
This package performs pathway enrichment analysis using a voting-based framework that integrates CpGâ gene regulatory information from expression quantitative trait methylation (eQTM) data. For a grid of top-ranked CpGs and filtering thresholds, gene sets are generated and refined using an entropy-based pruning strategy that balances information richness, stability, and probe bias correction. In particular, gene lists dominated by genes with disproportionately high numbers of CpG mappings are penalized to mitigate active probe biasâ a common artifact in methylation data analysis. Enrichment results across parameter combinations are then aggregated using a voting scheme, prioritizing pathways that are consistently recovered under diverse settings and robust to parameter perturbations.
Manipulation and analysis of phylogenetically simulated data sets and phylogenetically based analyses using GLS.
Gene-level variant association tests with disease status for pedigree data: kernel and burden association statistics.
The use of overparameterization is proposed with combinatorial analysis to test a broader spectrum of possible ARIMA models. In the selection of ARIMA models, the most traditional methods such as correlograms or others, do not usually cover many alternatives to define the number of coefficients to be estimated in the model, which represents an estimation method that is not the best. The popstudy package contains several tools for statistical analysis in demography and time series based in Shryock research (Shryock et. al. (1980) <https://books.google.co.cr/books?id=8Oo6AQAAMAAJ>).
Evaluate a function across a grid of parameters. The function may be evaluated once, or many times for simulation. Parallel computing is facilitated. Utilities aim at performing analyses of power and sample size, allowing for easy search of minimum n (or min/max of any other parameter) to achieve a desired minimal level of power (or maximum of any other objective). Plotting functions are included that present the dependency of n and power in relation to further assumptions.
Calculate and compare the prediction probability (PK) values for Anesthetic Depth Indicators. The PK values are widely used for measuring the performance of anesthetic depth and were first proposed by the group of Dr. Warren D. Smith in the paper Warren D. Smith; Robert C. Dutton; Ty N. Smith (1996) <doi:10.1097/00000542-199601000-00005> and Warren D. Smith; Robert C. Dutton; Ty N. Smith (1996) <doi:10.1002/(SICI)1097-0258(19960615)15:11%3C1199::AID-SIM218%3E3.0.CO;2-Y>. The authors provided two Microsoft Excel files in xls format for calculating and comparing PK values. This package provides an easy-to-use API for calculating and comparing PK values in R.
Quickly and easily add a mini map to your rmarkdown html documents.
Fits penalized generalized estimating equations to longitudinal data with high-dimensional covariates.
Generates Proteomics (PTX) quality control (QC) reports for shotgun LC-MS data analyzed with the MaxQuant software suite (from .txt files) or mzTab files (ideally from OpenMS QualityControl tool). Reports are customizable (target thresholds, subsetting) and available in HTML or PDF format. Published in J. Proteome Res., Proteomics Quality Control: Quality Control Software for MaxQuant Results (2015) <doi:10.1021/acs.jproteome.5b00780>.
The t-designs represent a generalized class of balanced incomplete block designs in which the number of blocks in which any t-tuple of treatments (t >= 2) occur together is a constant. When the focus of an experiment lies in grading and selecting treatment subgroups, t-designs would be preferred over the conventional ones, as they have the additional advantage of t-tuple balance. t-designs can be advantageously used in identifying the best crop-livestock combination for a particular location in Integrated Farming Systems that will help in generating maximum profit. But as the number of components increases, the number of possible t-component combinations will also increase. Most often, combinations derived from specific components are only practically feasible, for example, in a specific locality, farmers may not be interested in keeping a pig or goat and hence combinations involving these may not be of any use in that locality. In such situations partially balanced t-designs with few selected combinations appearing in a constant number of blocks (while others not at all appearing) may be useful (Sayantani Karmakar, Cini Varghese, Seema Jaggi & Mohd Harun (2021)<doi:10.1080/03610918.2021.2008436>). Further, every location may not have the resources to form equally sized homogeneous blocks. Partially balanced t-designs with unequal block sizes (Damaraju Raghavarao & Bei Zhou (1998)<doi:10.1080/03610929808832657>. Sayantani Karmakar, Cini Varghese, Seema Jaggi & Mohd Harun (2022)." Partially Balanced t-designs with unequal block sizes") prove to be more suitable for such situations.This package generates three series of partially balanced t-designs namely Series 1, Series 2 and Series 3. Series 1 and Series 2 are designs having equal block sizes and with treatment structures 4(t + 1) and a prime number, respectively. Series 3 consists of designs with unequal block sizes and with treatment structure n(n-1)/2. This package is based on the function named PBtD() for generating partially balanced t-designs along with their parameters, information matrices, average variance factors and canonical efficiency factors.
See Miroshnikov and Conlon (2014) <doi:10.1371/journal.pone.0108425>. Recent Bayesian Markov chain Monto Carlo (MCMC) methods have been developed for big data sets that are too large to be analyzed using traditional statistical methods. These methods partition the data into non-overlapping subsets, and perform parallel independent Bayesian MCMC analyses on the data subsets, creating independent subposterior samples for each data subset. These independent subposterior samples are combined through four functions in this package, including averaging across subset samples, weighted averaging across subsets samples, and kernel smoothing across subset samples. The four functions assume the user has previously run the Bayesian analysis and has produced the independent subposterior samples outside of the package; the functions use as input the array of subposterior samples. The methods have been demonstrated to be useful for Bayesian MCMC models including Bayesian logistic regression, Bayesian Gaussian mixture models and Bayesian hierarchical Poisson-Gamma models. The methods are appropriate for Bayesian hierarchical models with hyperparameters, as long as data values in a single level of the hierarchy are not split into subsets.
This package provides wrapper functions to access the ProPublica's Congress and Campaign Finance APIs. The Congress API provides near real-time access to legislative data from the House of Representatives, the Senate and the Library of Congress. The Campaign Finance API provides data from United States Federal Election Commission filings and other sources. The API covers summary information for candidates and committees, as well as certain types of itemized data. For more information about these APIs go to: <https://www.propublica.org/datastore/apis>.
This package provides a versatile R visualization package that empowers researchers with comprehensive visualization tools for seamlessly mapping peptides to protein sequences, identifying distinct domains and regions of interest, accentuating mutations, and highlighting post-translational modifications, all while enabling comparisons across diverse experimental conditions. Potential applications of PepMapViz include the visualization of cross-software mass spectrometry results at the peptide level for specific protein and domain details in a linearized format and post-translational modification coverage across different experimental conditions; unraveling insights into disease mechanisms. It also enables visualization of Major histocompatibility complex-presented peptide clusters in different antibody regions predicting immunogenicity in antibody drug development.
An implementation of two functions that estimate values for percentiles from an ordered categorical variable as described by Reardon (2011, isbn:978-0-87154-372-1). One function estimates percentile differences from two percentiles while the other returns the values for every percentile from 1 to 100.
Mixtures of Poisson Generalized Linear Models for high dimensional count data clustering. The (multivariate) responses can be partitioned into set of blocks. Three different parameterizations of the linear predictor are considered. The models are estimated according to the EM algorithm with an efficient initialization scheme <doi:10.1016/j.csda.2014.07.005>.