Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Fit quantile regression neural network models with optional left censoring, partial monotonicity constraints, generalized additive model constraints, and the ability to fit multiple non-crossing quantile functions following Cannon (2011) <doi:10.1016/j.cageo.2010.07.005> and Cannon (2018) <doi:10.1007/s00477-018-1573-6>.
The modeling and prediction of graph-associated time series(GATS) based on continuous time quantum walk. This software is mainly used for feature extraction, modeling, prediction and result evaluation of GATS, including continuous time quantum walk simulation, feature selection, regression analysis, time series prediction, and series fit calculation. A paper is attached to the package for reference.
Routines in qtl2 to study allele patterns in quantitative trait loci (QTL) mapping over a chromosome. Useful in crosses with more than two alleles to identify how sets of alleles, genetically different strands at the same locus, have different response levels. Plots show profiles over a chromosome. Can handle multiple traits together. See <https://github.com/byandell/qtl2pattern>.
Support package for the textbook "An Introduction to Quantitative Text Analysis for Linguists: Reproducible Research Using R" (Francom, 2024) <doi:10.4324/9781003393764>. Includes functions to acquire, clean, and analyze text data as well as functions to document and share the results of text analysis. The package is designed to be used in conjunction with the book, but can also be used as a standalone package for text analysis.
This package provides a toolkit for analysis and visualization of data from fluorophore-assisted seed amplification assays, such as Real-Time Quaking-Induced Conversion (RT-QuIC) and Fluorophore-Assisted Protein Misfolding Cyclic Amplification (PMCA). QuICSeedR addresses limitations in existing software by automating data processing, supporting large-scale analysis, and enabling comparative studies of analysis methods. It incorporates methods described in Henderson et al. (2015) <doi:10.1099/vir.0.069906-0>, Li et al. (2020) <doi:10.1038/s41598-021-96127-8>, Rowden et al. (2023) <doi:10.3390/pathogens12020309>, Haley et al. (2013) <doi:10.1371/journal.pone.0081488>, and Mair and Wilcox (2020) <doi:10.3758/s13428-019-01246-w>. Please refer to the original publications for details.
Efficiently solve quadratic problems with linear inequality, equality and box constraints. The method used is outlined in D. Goldfarb, and A. Idnani (1983) <doi:10.1007/BF02591962>.
Code for centroid, median and quantile classifiers.
Estimation methods for optimal treatment regimes under three different criteria, namely marginal quantile, marginal mean, and mean absolute difference. For the first two criteria, both one-stage and two-stage estimation method are implemented. A doubly robust estimator for estimating the quantile-optimal treatment regime is also included.
The queueing model of visual search models the accuracy and response time data in a visual search experiment using queueing models with finite customer population and stopping criteria of completing the service for finite number of customers. It implements the conceptualization of a hybrid model proposed by Moore and Wolfe (2001), in which visual stimuli enter the processing one after the other and then are identified in parallel. This package provides functions that simulate the specified queueing process and calculate the Wasserstein distance between the empirical response times and the model prediction.
Given inputs A,B and C, this package solves the matrix equation A*X^2 - B*X - C = 0.
Quantile-based estimators (Q-estimators) can be used to fit any parametric distribution, using its quantile function. Q-estimators are usually more robust than standard maximum likelihood estimators. The method is described in: Sottile G. and Frumento P. (2022). Robust estimation and regression with parametric quantile functions. <doi:10.1016/j.csda.2022.107471>.
Nomograms are constructed to predict the cumulative incidence rate which is calculated after adjusting for competing causes to the event of interest. K-fold cross-validation is implemented to validate predictive accuracy using a competing-risk version of the concordance index. Methods are as described in: Kattan MW, Heller G, Brennan MF (2003).
Retrieve protein information from the UniProtKB REST API (see <https://www.uniprot.org/help/api_queries>).
This package provides methods for detecting structural breaks, determining the number of breaks, and estimating break locations in linear quantile regression, using one or multiple quantiles, based on Qu (2008) and Oka and Qu (2011). Applicable to both time series and repeated cross-sectional data. The main function is rq.break(). . References for detailed theoretical and empirical explanations: . (1) Qu, Z. (2008). "Testing for Structural Change in Regression Quantiles." Journal of Econometrics, 146(1), 170-184 <doi:10.1016/j.jeconom.2008.08.006> . (2) Oka, T., and Qu, Z. (2011). "Estimating Structural Changes in Regression Quantiles." Journal of Econometrics, 162(2), 248-267 <doi:10.1016/j.jeconom.2011.01.005>.
Quantile Regression Forests is a tree-based ensemble method for estimation of conditional quantiles. It is particularly well suited for high-dimensional data. Predictor variables of mixed classes can be handled. The package is dependent on the package randomForest', written by Andy Liaw.
Simulating and estimating peer effect models including the quantile-based specification (Houndetoungan, 2025 <doi:10.48550/arXiv.2506.12920>), and the models with Constant Elasticity of Substitution (CES)-based social norm (Boucher et al., 2024 <doi:10.3982/ECTA21048>).
Presents an explanatory animation of normal quantile-quantile plots based on a water-filling analogy. The animation presents a normal QQ plot as the parametric plot of the water levels in vases defined by two distributions. The distributions decorate the axes in the normal QQ plot and are optionally shown as vases adjacent to the plot. The package draws QQ plots for several distributions, either as samples or continuous functions.
Molecular descriptors and outcomes for several public domain data sets.
Estimation and inference methods for the cross-quantilogram. The cross-quantilogram is a measure of nonlinear dependence between two variables, based on either unconditional or conditional quantile functions. It can be considered an extension of the correlogram, which is a correlation function over multiple lag periods that mainly focuses on linear dependency. One can use the cross-quantilogram to detect the presence of directional predictability from one time series to another. This package provides a statistical inference method based on the stationary bootstrap. For detailed theoretical and empirical explanations, see Linton and Whang (2007) for univariate time series analysis and Han, Linton, Oka and Whang (2016) for multivariate time series analysis. The full references for these key publications are as follows: (1) Linton, O., and Whang, Y. J. (2007). The quantilogram: with an application to evaluating directional predictability. Journal of Econometrics, 141(1), 250-282 <doi:10.1016/j.jeconom.2007.01.004>; (2) Han, H., Linton, O., Oka, T., and Whang, Y. J. (2016). The cross-quantilogram: measuring quantile dependence and testing directional predictability between time series. Journal of Econometrics, 193(1), 251-270 <doi:10.1016/j.jeconom.2016.03.001>.
Function that implements the Quantum Genetic Algorithm, first proposed by Han and Kim in 2000. This is an R implementation of the python application developed by Lahoz-Beltra (<https://github.com/ResearchCodesHub/QuantumGeneticAlgorithms>). Each optimization problem is represented as a maximization one, where each solution is a sequence of (qu)bits. Following the quantum paradigm, these qubits are in a superposition state: when measuring them, they collapse in a 0 or 1 state. After measurement, the fitness of the solution is calculated as in usual genetic algorithms. The evolution at each iteration is oriented by the application of two quantum gates to the amplitudes of the qubits: (1) a rotation gate (always); (2) a Pauli-X gate (optionally). The rotation is based on the theta angle values: higher values allow a quicker evolution, and lower values avoid local maxima. The Pauli-X gate is equivalent to the classical mutation operator and determines the swap between alfa and beta amplitudes of a given qubit. The package has been developed in such a way as to permit a complete separation between the engine, and the particular problem subject to combinatorial optimization.
Automates many of the tasks associated with quantitative discourse analysis of transcripts containing discourse including frequency counts of sentence types, words, sentences, turns of talk, syllables and other assorted analysis tasks. The package provides parsing tools for preparing transcript data. Many functions enable the user to aggregate data by any number of grouping variables, providing analysis and seamless integration with other R packages that undertake higher level analysis and visualization of text. This affords the user a more efficient and targeted analysis. qdap is designed for transcript analysis, however, many functions are applicable to other areas of Text Mining/ Natural Language Processing.
Quality control of chromatin immunoprecipitation libraries (ChIP-seq) by quantitative polymerase chain reaction (qPCR). This function calculates Enrichment value with respect to reference for each histone modification (specific to Vii7 software <http://www.thermofisher.com/ca/en/home/life-science/pcr/real-time-pcr/real-time-pcr-instruments/viia-7-real-time-pcr-system/viia-7-software.html>). This function is applicable to full panel of histone modifications described by International Human Epigenomic Consortium (IHEC).
This package provides a set of functions for taking qualitative GIS data, hand drawn on a map, and converting it to a simple features object. These tools are focused on data that are drawn on a map that contains some type of polygon features. For each area identified on the map, the id numbers of these polygons can be entered as vectors and transformed using qualmap.
This package provides seamless access to the QGIS (<https://qgis.org>) processing toolbox using the standalone qgis_process command-line utility. Both native and third-party (plugin) processing providers are supported. Beside referring data sources from file, also common objects from sf', terra and stars are supported. The native processing algorithms are documented by QGIS.org (2024) <https://docs.qgis.org/latest/en/docs/user_manual/processing_algs/>.