Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Allows the user to convert PDF tables to formats more amenable to analysis ('.csv', .xml', or .xlsx') by wrapping the PDFTables API. In order to use the package, the user needs to sign up for an API account on the PDFTables website (<https://pdftables.com/pdf-to-excel-api>). The package works by taking a PDF file as input, uploading it to PDFTables, and returning a file with the extracted data.
Data about Disney Pixar films provided by Wikipedia. This package contains data about the films, the people involved, and their awards.
Statistical methods for estimating preferential attachment and node fitness generative mechanisms in temporal complex networks are provided. Thong Pham et al. (2015) <doi:10.1371/journal.pone.0137796>. Thong Pham et al. (2016) <doi:10.1038/srep32558>. Thong Pham et al. (2020) <doi:10.18637/jss.v092.i03>. Thong Pham et al. (2021) <doi:10.1093/comnet/cnab024>.
The Food and Agriculture Organization-56 Penman-Monteith is one of the important method for estimating evapotranspiration from vegetated land areas. This package helps to calculate reference evapotranspiration using the weather variables collected from weather station. Evapotranspiration is the process of water transfer from the land surface to the atmosphere through evaporation from soil and other surfaces and transpiration from plants. The package aims to support agricultural, hydrological, and environmental research by offering accurate and accessible reference evapotranspiration calculation. This package has been developed using concept of Córdova et al. (2015)<doi:10.1016/j.apm.2022.09.004> and Debnath et al. (2015) <doi:10.1007/s40710-015-0107-1>.
This package implements recursive construction methods for balanced incomplete block designs (BIBDs), their second generation, resolvable BIBDs (RBIBDs), and uniform designs (UDs) derived from projective geometries over GF(2). It enables extraction of nested structures in multiple stages and supports recursive resolution processes, as introduced in Boudraa et al. (2013).
The perturbR() function incrementally perturbs network edges (using the rewireR function)and compares the resulting community detection solutions from the rewired networks with the solution found for the original network. These comparisons aid in understanding the stability of the original solution. The package requires symmetric, weighted (specifically, count) matrices/networks.
To Simplify the time consuming and error prone task of assembling complex data sets for non-linear mixed effects modeling. Users are able to select from different absorption processes such as zero and first order, or a combination of both. Furthermore, data sets containing data from several entities, responses, and covariates can be simultaneously assembled.
Create the density contour plot for bivariate inverse Gaussian distribution for given non negative random variables.
In gene sequencing methods, the topological features of protein-protein interaction (PPI) networks are often used, such as ToppNet <https://toppgene.cchmc.org>. In this study, a candidate gene prioritization method was proposed for non-communicable diseases considering disease risks transferred between genes in weighted disease PPI networks with weights for nodes and edges based on functional information.
This package contains functions to compute and plot confidence distributions, confidence densities, p-value functions and s-value (surprisal) functions for several commonly used estimates. Instead of just calculating one p-value and one confidence interval, p-value functions display p-values and confidence intervals for many levels thereby allowing to gauge the compatibility of several parameter values with the data. These methods are discussed by Infanger D, Schmidt-Trucksäss A. (2019) <doi:10.1002/sim.8293>; Poole C. (1987) <doi:10.2105/AJPH.77.2.195>; Schweder T, Hjort NL. (2002) <doi:10.1111/1467-9469.00285>; Bender R, Berg G, Zeeb H. (2005) <doi:10.1002/bimj.200410104> ; Singh K, Xie M, Strawderman WE. (2007) <doi:10.1214/074921707000000102>; Rothman KJ, Greenland S, Lash TL. (2008, ISBN:9781451190052); Amrhein V, Trafimow D, Greenland S. (2019) <doi:10.1080/00031305.2018.1543137>; Greenland S. (2019) <doi:10.1080/00031305.2018.1529625> and Rafi Z, Greenland S. (2020) <doi:10.1186/s12874-020-01105-9>.
Various useful functions for statisticians: describe data, plot Kaplan-Meier curves with numbers of subjects at risk, compare data sets, display spaghetti-plot, build multi-contingency tables...
Given an arbitrary set of spatial regions and road networks, generate a set of representative points, or pseudohouseholds, that can be used for travel burden analysis. Parallel processing is supported.
This package provides functions for working with primary event censored distributions and Stan implementations for use in Bayesian modeling. Primary event censored distributions are useful for modeling delayed reporting scenarios in epidemiology and other fields (Charniga et al. (2024) <doi:10.48550/arXiv.2405.08841>). It also provides support for arbitrary delay distributions, a range of common primary distributions, and allows for truncation and secondary event censoring to be accounted for (Park et al. (2024) <doi:10.1101/2024.01.12.24301247>). A subset of common distributions also have analytical solutions implemented, allowing for faster computation. In addition, it provides multiple methods for fitting primary event censored distributions to data via optional dependencies.
This package provides a toolbox to create a particle swarm optimisation (PSO), the package contains two classes: the Particle and the Particle Swarm, this two class are used to run the PSO with methods to easily print, plot and save the result.
The Prais-Winsten estimator (Prais & Winsten, 1954) takes into account AR(1) serial correlation of the errors in a linear regression model. The procedure recursively estimates the coefficients and the error autocorrelation of the specified model until sufficient convergence of the AR(1) coefficient is attained.
This package provides functions to calculate and plot event and pointer years as well as resilience indices. Designed for dendroecological applications, but also suitable to analyze patterns in other ecological time series.
This provides utilities for creating classed error and warning conditions based on where the error originated.
This package provides tools for downloading, reading and analyzing the National Survey of Health - PNS, a household survey from Brazilian Institute of Geography and Statistics - IBGE. The data must be downloaded from the official website <https://www.ibge.gov.br/>. Further analysis must be made using package survey'.
This package provides a progression model for repeated measures (PMRM) is a continuous-time nonlinear mixed-effects model for longitudinal clinical trials in progressive diseases. Unlike mixed models for repeated measures (MMRMs), which estimate treatment effects as linear combinations of additive effects on the outcome scale, PMRMs characterize treatment effects in terms of the underlying disease trajectory. This framing yields clinically interpretable quantities such as average time saved and percent reduction in decline due to treatment. This package implements frequentist PMRMs by Raket (2022) <doi:10.1002/sim.9581> using RTMB by Kristensen (2016) <doi:10.18637/jss.v070.i05>.
This is a computational package designed to identify the most sensitive interactions within a network which must be estimated most accurately in order to produce qualitatively robust predictions to a press perturbation. This is accomplished by enumerating the number of sign switches (and their magnitude) in the net effects matrix when an edge experiences uncertainty. The package produces data and visualizations when uncertainty is associated to one or more edges in the network and according to a variety of distributions. The software requires the network to be described by a system of differential equations but only requires as input a numerical Jacobian matrix evaluated at an equilibrium point. This package is based on Koslicki, D., & Novak, M. (2017) <doi:10.1007/s00285-017-1163-0>.
Measures real distances in pictures. With PDM() function, you can choose one *.jpg file, select the measure in mm of scale, starting and and finishing point in the graphical scale, the name of the measure, and starting and and finishing point of the measures. After, ask the user for a new measure.
Speeds up the process of loading raw data from MBA (Multiplex Bead Assay) examinations, performs quality control checks, and automatically normalises the data, preparing it for more advanced, downstream tasks. The main objective of the package is to create a simple environment for a user, who does not necessarily have experience with R language. The package is developed within the project of the same name - PvSTATEM', which is an international project aiming for malaria elimination.
This package provides a framework for building enterprise, scalable and UI-standardized shiny applications. It brings enhanced features such as bootstrap v4 <https://getbootstrap.com/docs/4.0/getting-started/introduction/>, additional and enhanced shiny modules, customizable UI features, as well as an enhanced application file organization paradigm. This update allows developers to harness the ability to build powerful applications and enriches the shiny developers experience when building and maintaining applications.
Transforms datetime data into a format ready for analysis. It offers two core functionalities; aggregating data to a higher level interval (thicken) and imputing records where observations were absent (pad).