Accompanies the book "Designing experiments and analyzing data: A model comparison perspective" (3rd ed.) by Maxwell, Delaney, & Kelley (2018; Routledge). Contains all of the data sets in the book's chapters and end-of-chapter exercises. Information about the book is available at <https://designingexperiments.com/>.
Bayesian variable selection methods for analyzing the structure of a Markov Random Field model for a network of binary and/or ordinal variables. Details of the implemented methods can be found in: Marsman, van den Bergh, and Haslbeck (in press) <doi:10.31234/osf.io/ukwrf>.
Resurrects the standard plot for shapes established by the base and graphics packages. This is suited to workflows that require plotting using the established and traditional idioms of plotting spatially coincident data where it belongs. This package depends on sf and only replaces the plot method.
Clustering multi-subject resting state functional Magnetic Resonance Imaging data. This methods enables the clustering of subjects based on multi-subject resting state functional Magnetic Resonance Imaging data. Objects are clustered based on similarities and differences in cluster-specific estimated components obtained by Independent Component Analysis.
This package provides a covariate-augmented overdispersed Poisson factor model is proposed to jointly perform a high-dimensional Poisson factor analysis and estimate a large coefficient matrix for overdispersed count data. More details can be referred to Liu et al. (2024) <doi:10.1093/biomtc/ujae031>.
Integrates two numerical omics data sets from the same samples using partial correlations. The output can be represented as a network, bipartite graph or a hypergraph structure. The method used in the package refers to Klaus et al (2021) <doi:10.1016/j.molmet.2021.101295>.
This package provides functions and data sets used in examples and exercises in the text Maindonald, J.H. and Braun, W.J. (2003, 2007, 2010) "Data Analysis and Graphics Using R", and in an upcoming Maindonald, Braun, and Andrews text that builds on this earlier text.
This is a (somewhat bizarre) collection of functions written to do various sorts of statistical election audits. There are also functions to generate simulated voting data, including methods to simulation different types of voting errors which allow for simulations for checking the characteristics of these methods.
This package provides functions to represent functional objects under a Reproducing Kernel Hilbert Space (RKHS) framework as described in Muñoz & González (2010). Autoregressive Hilbertian Model for functional time series using RKHS and predictive confidence bands construction as proposed in Hernández et al (2021).
The goal of this package is to provide wrapper functions in the data cleaning and cleansing processes. These function helps in messages and interaction with the user, keep track of information in pipelines, help in the wrangling, munging, assessment and visualization of data frame-like material.
This package provides a range of filters that can be applied to layers from the ggplot2 package and its extensions, along with other graphic elements such as guides and theme elements. The filters are applied at render time and thus uses the exact pixel dimensions needed.
Translation between experimental null hypotheses, hypothesis matrices, and contrast matrices as used in linear regression models. The package is based on the method described in Schad et al. (2019) <doi:10.1016/j.jml.2019.104038> and Rabe et al. (2020) <doi:10.21105/joss.02134>.
Imputation of missing values using the last observation carried forward technique on Indonesia food prices data that is time series data. Also, this technique applies imputation to data whose dates do not appear directly. So that the series assumptions in the time series data are met.
Estimation of various extensions of the mixed models including latent class mixed models, joint latent class mixed models, mixed models for curvilinear outcomes, mixed models for multivariate longitudinal outcomes using a maximum likelihood estimation method (Proust-Lima, Philipps, Liquet (2017) <doi:10.18637/jss.v078.i02>).
Originally design to characterise Aqueous Two Phase Systems, LLSR provide a simple way to analyse experimental data and obtain phase diagram parameters, among other properties, systematically. The package will include (every other update) new functions in order to comprise useful tools in liquid-liquid extraction research.
Allows you to read and change the state of LIFX smart light bulbs via the LIFX developer api <https://api.developer.lifx.com/>. Covers most LIFX api endpoints, including changing light color and brightness, selecting lights by id, group or location as well as activating effects.
This package performs the MRFA approach proposed by Sung et al. (2020) <doi:10.1080/01621459.2019.1595630> to fit and predict nonlinear regression problems, particularly for large-scale and high-dimensional problems. The application includes deterministic or stochastic computer experiments, spatial datasets, and so on.
The calculation of p-variation of the finite sample data. This package is a realisation of the procedure described in Butkus, V. & Norvaisa, R. Lith Math J (2018). <doi: 10.1007/s10986-018-9414-3> The formal definitions and reference into literature are given in vignette.
Do multi-gene descent probabilities (Thompson, 1983, <doi:10.1098/rspb.1983.0072>) and special cases thereof (Thompson, 1986, <doi:10.1002/zoo.1430050210>) including inbreeding and kinship coefficients. But does much more: probabilities of any set of genes descending from any other set of genes.
This package provides access to the Taxonomic Name Resolution Service <https://github.com/ojalaquellueva/tnrsapi> through R. The user supplies plant taxonomic names and the package returns resolved taxonomic names along with information on decisions. Optionally, the package can also be used to parse taxonomic names.
Several analysis-related functions for the book entitled "Web-based Analysis without R in Your Computer"(written in Korean, ISBN 978-89-5566-185-9) by Keon-Woong Moon. The main function plot.htest()
shows the distribution of statistic for the object of class htest'.
In Multidimensional Systems the When dimension allows us to express when the analysed facts have occurred. The purpose of this package is to provide support for implementing this dimension in the form of date and time tables for Relational On-Line Analytical Processing star database systems.
The Xeva package provides efficient and powerful functions for patient-drived xenograft (PDX) based pharmacogenomic data analysis. This package contains a set of functions to perform analysis of patient-derived xenograft data. This package was developed by the BHKLab, for further information please see our documentation.
This package provides tools for accessing the Botanical Information and Ecology Network (BIEN) database. The BIEN database contains cleaned and standardized botanical data including occurrence, trait, plot and taxonomic data. This package provides functions that query the BIEN database by constructing and executing optimized SQL queries.