Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Parallelized version of the "segment" function from Bioconductor package "DNAcopy", utilizing multi-core computation on host CPU.
This package provides a collection of functions to process digital images, depict greenness index trajectories and extract relevant phenological stages.
This package provides functions for phenological data preprocessing, modelling and result handling. For more information, please refer to Lange et al. (2016) <doi:10.1007/s00484-016-1161-8>.
This uses a mixed integer mathematical programming (MIP) approach for building and solving multi-action planning problems, where the goal is to find an optimal combination of management actions that abate threats, in an efficient way while accounting for spatial aspects. Thus, optimizing the connectivity and conservation effectiveness of the prioritized units and of the deployed actions. The package is capable of handling different commercial (gurobi, CPLEX) and non-commercial (symphony, CBC) MIP solvers. Gurobi optimization solver can be installed using comprehensive instructions in the gurobi installation vignette of the prioritizr package (available in <https://prioritizr.net/articles/gurobi_installation_guide.html>). Instead, CPLEX optimization solver can be obtain from IBM CPLEX web page (available here <https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio>). Additionally, the rcbc R package (available at <https://github.com/dirkschumacher/rcbc>) can be used to obtain solutions using the CBC optimization software (<https://github.com/coin-or/Cbc>). Methods used in the package refers to Salgado-Rojas et al. (2020) <doi:10.1016/j.ecolmodel.2019.108901>, Beyer et al. (2016) <doi:10.1016/j.ecolmodel.2016.02.005>, Cattarino et al. (2015) <doi:10.1371/journal.pone.0128027> and Watts et al. (2009) <doi:10.1016/j.envsoft.2009.06.005>. See the prioriactions website for more information, documentations and examples.
Reverse depends for a given package are queued such that multiple workers can run the reverse-dependency tests in parallel.
This package provides a suite of multivariate methods and data visualization tools to implement profile analysis and cross-validation techniques described in Davison & Davenport (2002) <DOI: 10.1037/1082-989X.7.4.468>, Bulut (2013), and other published and unpublished resources. The package includes routines to perform criterion-related profile analysis, profile analysis via multidimensional scaling, moderated profile analysis, profile analysis by group, and a within-person factor model to derive score profiles.
The base R data.frame, like any vector, is copied upon modification. This behavior is at odds with that of GUIs and interactive graphics. To rectify this, plumbr provides a mutable, dynamic tabular data model. Models may be chained together to form the complex plumbing necessary for sophisticated graphical interfaces. Also included is a general framework for linking datasets; an typical use case would be a linked brush.
XKCD described a supposedly "bad" colormap that it called a "Painbow" (see <https://xkcd.com/2537/>). But simple tests demonstrate that under some circumstances, the colormap can perform very well, and people can find information that is difficult to detect with the ggplot2 default and even supposedly "good" colormaps like viridis. This library let's you use the Painbow in your own ggplot graphs.
This package implements a unified interface for benchmarking meta-analytic publication bias correction methods through simulation studies (see Bartoš et al., 2025, <doi:10.48550/arXiv.2510.19489>). It provides 1) predefined data-generating mechanisms from the literature, 2) functions for running meta-analytic methods on simulated data, 3) pre-simulated datasets and pre-computed results for reproducible benchmarks, 4) tools for visualizing and comparing method performance.
Sankey diagrams are a powerfull and visually attractive way to visualize the flow of conservative substances through a system. They typically consists of a network of nodes, and fluxes between them, where the total balance in each internal node is 0, i.e. input equals output. Sankey diagrams are typically used to display energy systems, material flow accounts etc. Unlike so-called alluvial plots, Sankey diagrams also allow for cyclic flows: flows originating from a single node can, either direct or indirect, contribute to the input of that same node. This package, named after the Greek aphorism Panta Rhei (everything flows), provides functions to create publication-quality diagrams, using data in tables (or spread sheets) and a simple syntax.
This package provides functions for graph-based multiple-sample testing and visualization of microbiome data, in particular data stored in phyloseq objects. The tests are based on those described in Friedman and Rafsky (1979) <http://www.jstor.org/stable/2958919>, and the tests are described in more detail in Callahan et al. (2016) <doi:10.12688/f1000research.8986.1>.
Interfaces and methods for variable selection in Partial Least Squares. The methods include filter methods, wrapper methods and embedded methods. Both regression and classification is supported.
This package provides classes to pre-process microarray gene expression data as part of the OOMPA collection of packages described at <http://oompa.r-forge.r-project.org/>.
Collection of tutorials for working with Positron'. Covers scripts, Quarto documents, Git', GitHub', and Quarto websites. Makes extensive use of the tools in the tutorial.helpers package.
Calculate common types of tables for weighted survey data. Options include topline and (2-way and 3-way) crosstab tables of categorical or ordinal data as well as summary tables of weighted numeric variables. Optionally, include the margin of error at selected confidence intervals including the design effect. The design effect is calculated as described by Kish (1965) <doi:10.1002/bimj.19680100122> beginning on page 257. Output takes the form of tibbles (simple data frames). This package conveniently handles labelled data, such as that commonly used by Stata and SPSS. Complex survey design is not supported at this time.
For a multivariate dataset with independent Poisson measurement error, calculates principal components of transformed latent Poisson means. T. Kenney, T. Huang, H. Gu (2019) <arXiv:1904.11745>.
This package provides tools for computing bare-bones and psychometric meta-analyses and for generating psychometric data for use in meta-analysis simulations. Supports bare-bones, individual-correction, and artifact-distribution methods for meta-analyzing correlations and d values. Includes tools for converting effect sizes, computing sporadic artifact corrections, reshaping meta-analytic databases, computing multivariate corrections for range variation, and more. Bugs can be reported to <https://github.com/psychmeta/psychmeta/issues> or <issues@psychmeta.com>.
Generates design matrix for analysing real paired comparisons and derived paired comparison data (Likert type items/ratings or rankings) using a loglinear approach. Fits loglinear Bradley-Terry model (LLBT) exploiting an eliminate feature. Computes pattern models for paired comparisons, rankings, and ratings. Some treatment of missing values (MCAR and MNAR). Fits latent class (mixture) models for paired comparison, rating and ranking patterns using a non-parametric ML approach.
Enables direct cloud access to health care decision models hosted on the PRISM server of the Peer Models Network.
Given a vector of Taylor series coefficients of sufficient length as input, the function returns the numerator and denominator coefficients for the Padé approximant of appropriate order (Baker, 1975) <ISBN:9780120748556>.
Kappa, ICC, reliability coefficient, parallel analysis, multi-traits multi-methods, spherical representation of a correlation matrix.
This package provides a comprehensive, user-friendly package for label-free proteomics data analysis and machine learning-based modeling. Data generated from MaxQuant can be easily used to conduct differential expression analysis, build predictive models with top protein candidates, and assess model performance. promor includes a suite of tools for quality control, visualization, missing data imputation (Lazar et. al. (2016) <doi:10.1021/acs.jproteome.5b00981>), differential expression analysis (Ritchie et. al. (2015) <doi:10.1093/nar/gkv007>), and machine learning-based modeling (Kuhn (2008) <doi:10.18637/jss.v028.i05>).
This package provides a set of raw datasets used to create SDTM domains in pharmaversesdtm package.
Portable /proc/self/maps as a data frame. Determine which library or other region is mapped to a specific address of a process. -- R packages can contain native code, compiled to shared libraries at build or installation time. When loaded, each shared library occupies a portion of the address space of the main process. When only a machine instruction pointer is available (e.g. from a backtrace during error inspection or profiling), the address space map determines which library this instruction pointer corresponds to.