Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimation of panel models for glm-like models: this includes binomial models (logit and probit), count models (poisson and negbin) and ordered models (logit and probit), as described in: Baltagi (2013) Econometric Analysis of Panel Data, ISBN-13:978-1-118-67232-7, Hsiao (2014) Analysis of Panel Data <doi:10.1017/CBO9781139839327> and Croissant and Millo (2018), Panel Data Econometrics with R, ISBN:978-1-118-94918-4.
Package for processing downloaded MODIS Calibrated radiances Product HDF files. Specifically, MOD02 calibrated radiance product files, and the associated MOD03 geolocation files (for MODIS-TERRA). The package will be most effective if the user installs MRTSwath (MODIS Reprojection Tool for swath products; <https://lpdaac.usgs.gov/tools/modis_reprojection_tool_swath>, and adds the directory with the MRTSwath executable to the default R PATH by editing ~/.Rprofile.
High Dynamic Range (HDR) images support a large range in luminosity between the lightest and darkest regions of an image. To capture this range, data in HDR images is often stored as floating point numbers and in formats that capture more data and channels than standard image types. This package supports reading and writing two types of HDR images; PFM (Portable Float Map) and OpenEXR images. HDR images can be converted to lower dynamic ranges (for viewing) using tone-mapping. A number of tone-mapping algorithms are included which are based on Reinhard (2002) "Photographic tone reproduction for digital images" <doi:10.1145/566654.566575>.
This package provides functions for the construction of Petri Nets. Petri Nets can be replayed by firing enabled transitions. Silent transitions will be hidden by the execution handler. Also includes functionalities for the visualization of Petri Nets and export of Petri Nets to PNML (Petri Net Markup Language) files.
Conduct penalized meta-analysis, see Van Lissa, Van Erp, & Clapper (2023) <doi:10.31234/osf.io/6phs5>. In meta-analysis, there are often between-study differences. These can be coded as moderator variables, and controlled for using meta-regression. However, if the number of moderators is large relative to the number of studies, such an analysis may be overfit. Penalized meta-regression is useful in these cases, because it shrinks the regression slopes of irrelevant moderators towards zero.
This package provides functions for generating progressively Type-II censored data in a mixture structure and fitting models using a constrained EM algorithm. It can also create a progressive Type-II censored version of a given real dataset to be considered for model fitting.
This package implements partition-assisted clustering and multiple alignments of networks. It 1) utilizes partition-assisted clustering to find robust and accurate clusters and 2) discovers coherent relationships of clusters across multiple samples. It is particularly useful for analyzing single-cell data set. Please see Li et al. (2017) <doi:10.1371/journal.pcbi.1005875> for detail method description.
Generalized Least Squares (GLS) estimation of Seemingly Unrelated Regression (SUR) systems on unbalanced panel in the one/two-way cases also taking into account the possibility of cross equation restrictions. Methodological details can be found in Biørn (2004) <doi:10.1016/j.jeconom.2003.10.023> and Platoni, Sckokai, Moro (2012) <doi:10.1080/07474938.2011.607098>.
Estimate spatial autoregressive nonlinear probit models with and without autoregressive disturbances using partial maximum likelihood estimation. Estimation and inference regarding marginal effects is also possible. For more details see Bille and Leorato (2020) <doi:10.1080/07474938.2019.1682314>.
This package provides a collection of process capability index functions, such as C_p(), C_pk(), C_pm(), and others, along with metadata about each, like LaTeX equations and R expressions. Its primary purpose is to form a foundation for other quality control packages to build on top of, by providing basic resources and functions. The indices belong to the field of statistical quality control, and quantify the degree to which a manufacturing process is able to create items that adhere to a certain standard of quality. For details see Montgomery, D. C. (2019, ISBN:978-1-119-39930-8).
Data sets associated with modeling examples in Craig Starbuck's book, "The Fundamentals of People Analytics: With Applications in R".
Assessment of habitat selection by means of the permutation-based combination of sign tests (Fattorini et al., 2014 <DOI:10.1007/s10651-013-0250-7>). To exemplify the application of this procedure, habitat selection is assessed for a population of European Brown Hares settled in central Italy.
This package provides a suite of likelihood ratio test based methods to use in pharmacovigilance. Contains various testing and post-processing functions.
Fits and analyses time dependent marked point process models with an emphasis on earthquake modelling. For a more detailed introduction to the package, see the topic "PtProcess". A list of recent changes can be found in the topic "Change Log".
Perform a differential analysis at pathway level based on metabolite quantifications and information on pathway metabolite composition. The method, described in Guilmineau et al (2025) <doi:10.1186/s12859-025-06118-z> is based on a Principal Component Analysis step and on a linear mixed model. Automatic query of metabolic pathways is also implemented.
This package provides functions that support a broad range of common tasks in physical activity research, including but not limited to creation of Bland-Altman plots (<doi:10.1136/bmj.313.7049.106>), metabolic calculations such as basal metabolic rate predictions (<https://europepmc.org/article/med/4044297/reloa>), demographic calculations such as age-for-body-mass-index percentile (<https://www.cdc.gov/growthcharts/cdc_charts.htm>), and analysis of bout detection algorithm performance (<https://pubmed.ncbi.nlm.nih.gov/34258524/>).
Penalized orthogonal-components regression (POCRE) is a supervised dimension reduction method for high-dimensional data. It sequentially constructs orthogonal components (with selected features) which are maximally correlated to the response residuals. POCRE can also construct common components for multiple responses and thus build up latent-variable models.
This package provides a unified interface to access and manipulate various Philippine statistical classifications. It allows users to retrieve, filter, and harmonize classification data, making it easier to work with Philippine statistical data in R.
This package creates and manages a provenance graph corresponding to the provenance created by the rdtLite package, which collects provenance from R scripts. rdtLite is available on CRAN. The provenance format is an extension of the W3C PROV JSON format (<https://www.w3.org/Submission/2013/SUBM-prov-json-20130424/>). The extended JSON provenance format is described in <https://github.com/End-to-end-provenance/ExtendedProvJson>.
Pivot easily by specifying rows, columns, values and split.
This package provides a set of datasets and functions used in the book Modele liniowe i mieszane w R, wraz z przykladami w analizie danych'. Datasets either come from real studies or are created to be as similar as possible to real studies.
The aim of postpack is to provide the infrastructure for a standardized workflow for mcmc.list objects. These objects can be used to store output from models fitted with Bayesian inference using JAGS', WinBUGS', OpenBUGS', NIMBLE', Stan', or even custom MCMC algorithms. Although the coda R package provides some methods for these objects, it is somewhat limited in easily performing post-processing tasks for specific nodes. Models are ever increasing in their complexity and the number of tracked nodes, and oftentimes a user may wish to summarize/diagnose sampling behavior for only a small subset of nodes at a time for a particular question or figure. Thus, many postpack functions support performing tasks on a subset of nodes, where the subset is specified with regular expressions. The functions in postpack streamline the extraction, summarization, and diagnostics of specific monitored nodes after model fitting. Further, because there is rarely only ever one model under consideration, postpack scales efficiently to perform the same tasks on output from multiple models simultaneously, facilitating rapid assessment of model sensitivity to changes in assumptions.
Given a project schedule and associated costs, this package calculates the earned value to date. It is an implementation of Project Management Body of Knowledge (PMBOK) methodologies (reference Project Management Institute. (2021). A guide to the Project Management Body of Knowledge (PMBOK guide) (7th ed.). Project Management Institute, Newtown Square, PA, ISBN 9781628256673 (pdf)).
Check compliance of event-data from (business) processes with respect to specified rules. Rules supported are of three types: frequency (activities that should (not) happen x number of times), order (succession between activities) and exclusiveness (and and exclusive choice between activities).