Quasi-Monte-Carlo algorithm for systematic generation of shock scenarios from an arbitrary multivariate elliptical distribution. The algorithm selects a systematic mesh of arbitrary fineness that approximately evenly covers an isoprobability ellipsoid in d dimensions (Flood, Mark D. & Korenko, George G. (2013) <doi:10.1080/14697688.2014.926018>). This package is the R analogy to the Matlab code published by Flood & Korenko in above-mentioned paper.
This package provides functions for the variance gamma distribution. Density, distribution and quantile functions. Functions for random number generation and fitting of the variance gamma to data. Also, functions for computing moments of the variance gamma distribution of any order about any location. In addition, there are functions for checking the validity of parameters and to interchange different sets of parameterizations for the variance gamma distribution.
Rcpp (free of Java'/'Weka') implementation of FSelector entropy-based feature selection algorithms based on an MDL discretization (Fayyad U. M., Irani K. B.: Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning. In 13'th International Joint Conference on Uncertainly in Artificial Intelligence (IJCAI93), pages 1022-1029, Chambery, France, 1993.) <https://www.ijcai.org/Proceedings/93-2/Papers/022.pdf> with a sparse matrix support.
Easily analyze and visualize the performance of symptom checkers. This package can be used to gain comprehensive insights into the performance of single symptom checkers or the performance of multiple symptom checkers. It can be used to easily compare these symptom checkers across several metrics to gain an understanding of their strengths and weaknesses. The metrics are developed in Kopka et al. (2023) <doi:10.1177/20552076231194929>.
The main application concerns to a new robust optimization package with two major contributions. The first contribution refers to the assessment of the adequacy of probabilistic models through a combination of several statistics, which measure the relative quality of statistical models for a given data set. The second one provides a general purpose optimization method based on meta-heuristics functions for maximizing or minimizing an arbitrary objective function.
This package provides the functions for Brunner-Munzel test and permuted Brunner-Munzel test, which enable to use formula, matrix, and table as argument. These functions are based on Brunner and Munzel (2000) <doi:10.1002/(SICI)1521-4036(200001)42:1%3C17::AID-BIMJ17%3E3.0.CO;2-U> and Neubert and Brunner (2007) <doi:10.1016/j.csda.2006.05.024>, and are written with FORTRAN.
This package provides methods to compute linear h-step ahead prediction coefficients based on localised and iterated Yule-Walker estimates and empirical mean squared and absolute prediction errors for the resulting predictors. Also, functions to compute autocovariances for AR(p) processes, to simulate tvARMA(p,q
) time series, and to verify an assumption from Kley et al. (2019), Electronic of Statistics, forthcoming. Preprint <arXiv:1611.04460>
.
Segmentation and classification procedures for data from the Activinsights GENEActiv <https://activinsights.com/technology/geneactiv/> accelerometer that provides the user with a model to guess behaviour from test data where behaviour is missing. Includes a step counting algorithm, a function to create segmented data with custom features and a function to use recursive partitioning provided in the function rpart()
of the rpart package to create classification models.
Estimates a collection of time-indexed functions under either of Gaussian process (GP) or intrinsic Gaussian Markov random field (iGMRF
) prior formulations where a Dirichlet process mixture allows sub-groupings of the functions to share the same covariance or precision parameters. The GP and iGMRF
formulations both support any number of additive covariance or precision terms, respectively, expressing either or both of multiple trend and seasonality.
Metaprogramming utilities for converting R regression model formulae to equivalents in Julia <doi:10.1137/141000671>, via modifications to the abstract syntax tree. Supports translations in zero correlation random effects syntax, protection of expressions to be evaluated as-is, interaction terms, and more. Accepts strings or R formula objects and returns modified R formula objects where possible (or a modified string, if not a valid formula in R).
Sudoku designs (Bailey et al., 2008<doi:10.1080/00029890.2008.11920542>) can be used as experimental designs which tackle one extra source of variation than conventional Latin square designs. Although Sudoku designs are similar to Latin square designs, only addition is the region concept. Some very important functions related to row-column designs as well as block designs along with basic functions are included in this package.
RStudio allows to show and navigate for the outline of a R Markdown file, but not for R Markdown projects with multiple files. For this reason, I have developed several RStudio addins capable of show project outline. Each addin is specialized in showing projects of different types: R Markdown project, bookdown package project and LaTeX
project. There is a configuration file that allows you to customize additional searches.
This package provides a collection of methods to determine the required sample size for the evaluation of inequality constrained hypotheses by means of a Bayes factor. Alternatively, for a given sample size, the unconditional error probabilities or the expected conditional error probabilities can be determined. Additional material on the methods in this package is available in Klaassen, F., Hoijtink, H. & Gu, X. (2019) <doi:10.31219/osf.io/d5kf3>.
Colocalisation analysis tests whether two traits share a causal genetic variant in a specified genomic region. Proportional testing for colocalisation has been previously proposed [Wallace (2013) <doi:10.1002/gepi.21765>], but is reimplemented here to overcome barriers to its adoption. Its use is complementary to the fine- mapping based colocalisation method in the coloc package, and may be used in particular to identify false "H3" conclusions in coloc'.
Researchers can characterize and learn about the properties of research designs before implementation using `DeclareDesign`
. Ex ante declaration and diagnosis of designs can help researchers clarify the strengths and limitations of their designs and to improve their properties, and can help readers evaluate a research strategy prior to implementation and without access to results. It can also make it easier for designs to be shared, replicated, and critiqued.
DEploid (Zhu et.al. 2018 <doi:10.1093/bioinformatics/btx530>) is designed for deconvoluting mixed genomes with unknown proportions. Traditional phasing programs are limited to diploid organisms. Our method modifies Li and Stephenâ s algorithm with Markov chain Monte Carlo (MCMC) approaches, and builds a generic framework that allows haloptype searches in a multiple infection setting. This package provides R functions to support data analysis and results interpretation.
This package provides landscape genomic functions to analyse SNP (single nuclear polymorphism) data, such as least cost path analysis and isolation by distance. Therefore each sample needs to have coordinate data attached (lat/lon) to be able to run most of the functions. dartR.spatial
is a package that belongs to the dartRverse
suit of packages and depends on dartR.base
and dartR.data
'.
This package provides functions for multiple knockoff inference using summary statistics, e.g. Z-scores. The knockoff inference is a general procedure for controlling the false discovery rate (FDR) when performing variable selection. This package provides a procedure which performs knockoff inference without ever constructing individual knockoffs (GhostKnockoff
). It additionally supports multiple knockoff inference for improved stability and reproducibility. Moreover, it supports meta-analysis of multiple overlapping studies.
Manage keys, certificates, secrets, and storage accounts in Microsoft's Key Vault service: <https://azure.microsoft.com/products/key-vault/>. Provides facilities to store and retrieve secrets, use keys to encrypt, decrypt, sign and verify data, and manage certificates. Integrates with the AzureAuth
package to enable authentication with a certificate, and with the openssl package for importing and exporting cryptographic objects. Part of the AzureR
family of packages.
An add-on package to DImodels for the fitting of biodiversity and ecosystem function relationship study data with multiple ecosystem function responses and/or time points. This package uses the multivariate and repeated measures Diversity-Interactions (DI) methods developed by Kirwan et al. (2009) <doi:10.1890/08-1684.1>, Finn et al. (2013) <doi:10.1111/1365-2664.12041>, and Dooley et al. (2015) <doi:10.1111/ele.12504>.
This package provides a drop-in replacement for flexdashboard Rmd documents, which implements an after-knit-hook to split the generated single page application in one document per main section to reduce rendering load in the web browser displaying the document. Put all JavaScript
stuff needed in all sections before the first headline featuring navigation menu attributes. This package is experimental and maybe replaced by a solution inside flexdashboard'.
The HJ-Biplot is a multivariate method that represents high-dimensional data in a low-dimensional subspace, capturing most of the informationâ s variability in just a few dimensions. This package implements three new regularized versions of the HJ-Biplot: Ridge, LASSO, and Elastic Net. These versions introduce restrictions that shrink or zero-out variable weights to improve interpretability based on regularization theory. All methods provide graphical representations using ggplot2'.
This package provides a comprehensive and user-friendly interface for accessing, manipulating, and analyzing country-level data from around the world. It allows users to retrieve detailed information on countries, including names, regions, continents, populations, currencies, calling codes, and more, all in a tidy data format. The package is designed to work seamlessly within the tidyverse ecosystem, making it easy to filter, arrange, and visualize country-level data in R.
This package provides a system to simulate clinical trials with time to event endpoints. Event simulation is based on Cox models allowing for covariates in addition to the treatment or group factor. Specific drop-out rates (separate from administrative censoring) can be controlled in the simulation. Other features include stratified randomization, non-proportional hazards, different accrual patterns, and event projection (timing to reach the target event) based on interim data.