This package implements the chain binomial model for analysis of infectious disease data. Contains functions for calculating probabilities of the final size of infectious disease outbreaks using the method from D. Ludwig (1975) <doi:10.1016/0025-5564(75)90119-4> and for outbreaks that are not concluded, from Lindstrøm et al. (2024) <doi:10.48550/arXiv.2403.03948>
. The package also contains methods for estimation and regression analysis of secondary attack rates.
This package implements Data Envelopment Analysis (DEA) with a hyperbolic orientation using a non-linear programming solver. It enables flexible estimations with weight restrictions, non-discretionary variables, and a generalized distance function. Additionally, it allows for the calculation of slacks and super-efficiency scores. The methods are detailed in à ttl et al. (2023), <doi:10.1016/j.dajour.2023.100343>. Furthermore, the package provides a non-linear profitability estimation built upon the DEA framework.
The Programme for International Student Assessment (PISA) is a global study conducted by the Organization for Economic Cooperation and Development (OECD) in member and non-member countries to assess educational systems by assessing 15-year-old school students academic performance in mathematics, science, and reading. This datasets contains information on their scores and other socioeconomic characteristics, information about their school and its infrastructure, as well as the countries that are taking part in the program.
This package provides a collection of sparse and regularized discriminant analysis methods intended for small-sample, high-dimensional data sets. The package features the High-Dimensional Regularized Discriminant Analysis classifier from Ramey et al. (2017) <arXiv:1602.01182>
. Other classifiers include those from Dudoit et al. (2002) <doi:10.1198/016214502753479248>, Pang et al. (2009) <doi:10.1111/j.1541-0420.2009.01200.x>, and Tong et al. (2012) <doi:10.1093/bioinformatics/btr690>.
Uses a novel rank-based nonparametric approach to evaluate a surrogate marker in a small sample size setting. Details are described in Parast et al (2024) <doi:10.1093/biomtc/ujad035> and Hughes A et al (2025) <doi:10.48550/arXiv.2502.03030>
. A tutorial for this package can be found at <https://www.laylaparast.com/surrogaterank> and a Shiny App implementing the package can be found at <https://parastlab.shinyapps.io/SurrogateRankApp/>
.
Table 1 is the classical way to describe the patients in a clinical study. The amount of splits in the data in such a table is limited. Table1Heatmap draws a heatmap of all crosstables that can be generated with the data. Users can choose between showing the actual crosstables or direction of effect of associations, and highlight associations by number of patients or p-values. v1.2 - fixed "missing "no visible global function definition for ..".
Import gaze data from edf files generated by the SR Research <https://www.sr-research.com/> EyeLink
eye tracker. Gaze data, both recorded events and samples, is imported per trial. The package allows to extract events of interest, such as saccades, blinks, etc. as well as recorded variables and custom events (areas of interest, triggers) into separate tables. The package requires EDF API library that can be obtained at <https://www.sr-research.com/support/>.
This package provides functions and classes for spatial resampling to use with the rsample package, such as spatial cross-validation (Brenning, 2012) <doi:10.1109/IGARSS.2012.6352393>. The scope of rsample and spatialsample is to provide the basic building blocks for creating and analyzing resamples of a spatial data set, but neither package includes functions for modeling or computing statistics. The resampled spatial data sets created by spatialsample do not contain much overhead in memory.
This package provides functionality of a statistical testing implementation whether a dataset comes from a symmetric distribution when the center of symmetry is unknown, including Wilcoxon test and sign test procedure. In addition, sample size determination for both tests is provided. The Wilcoxon test procedure is described in Vexler et al. (2023) <https://www.sciencedirect.com/science/article/abs/pii/S0167947323000579>, and the sign test is outlined in Gastwirth (1971) <https://www.jstor.org/stable/2284233>.
This package provides a client for the Bioconductor AnnotationHub web resource. The AnnotationHub web resource provides a central location where genomic files (e.g. VCF, bed, wig) and other resources from standard locations (e.g. UCSC, Ensembl) can be discovered. The resource includes metadata about each resource, e.g., a textual description, tags, and date of modification. The client creates and manages a local cache of files retrieved by the user, helping with quick and reproducible access.
Understanding spatial association is essential for spatial statistical inference, including factor exploration and spatial prediction. Geographically optimal similarity (GOS) model is an effective method for spatial prediction, as described in Yongze Song (2022) <doi:10.1007/s11004-022-10036-8>. GOS was developed based on the geographical similarity principle, as described in Axing Zhu (2018) <doi:10.1080/19475683.2018.1534890>. GOS has advantages in more accurate spatial prediction using fewer samples and critically reduced prediction uncertainty.
This package provides the ability to create dynamic citations in which the bibliographic information is pulled from the web rather than having to be entered into a local database such as bibtex ahead of time. The package is primarily aimed at authoring in the R markdown format, and can provide outputs for web-based authoring such as linked text for inline citations. Cite using a DOI', URL, or bibtex file key. See the package URL for details.
Visualize confounder control in meta-analysis. metaconfoundr is an approach to evaluating bias in studies used in meta-analyses based on the causal inference framework. Study groups create a causal diagram displaying their assumptions about the scientific question. From this, they develop a list of important confounders'. Then, they evaluate whether studies controlled for these variables well. metaconfoundr is a toolkit to facilitate this process and visualize the results as heat maps, traffic light plots, and more.
The package addresses, for LaTeX documents, the severe limitation on the number of output streams that TeX provides. The package uses a single TeX output stream, and writes marked-up output to this stream. The user may then post-process the marked-up output file, using LaTeX, and the document's output appears as separate files, according to the calls made to the package. The output to be post-processed uses macros from the widely-available ProTeX package.
Aids the programming of Clinical Data Standards Interchange Consortium (CDISC) compliant Ophthalmology Analysis Data Model (ADaM
) datasets in R. ADaM
datasets are a mandatory part of any New Drug or Biologics License Application submitted to the United States Food and Drug Administration (FDA). Analysis derivations are implemented in accordance with the "Analysis Data Model Implementation Guide" (CDISC Analysis Data Model Team, 2021, <https://www.cdisc.org/standards/foundational/adam/adamig-v1-3-release-package>).
An interface to the Microsoft 365 (formerly known as Office 365') suite of cloud services, building on the framework supplied by the AzureGraph
package. Enables access from R to data stored in Teams', SharePoint
Online and OneDrive
', including the ability to list drive folder contents, upload and download files, send messages, and retrieve data lists. Also provides a full-featured Outlook email client, with the ability to send emails and manage emails and mail folders.
Ksoloti is an environment for generating and processing digital audio. It can be a programmable virtual modular synthesizer, polysynth, drone box, sequencer, chord generator, multi effect, sample player, looper, granular sampler, MIDI generator/processor, CV or trigger generator, anything in between, and more.
The Ksoloti Core is a rework of the discontinued Axoloti Core board. In short, Ksoloti aims for maximum compatibility with the original Axoloti, but with some layout changes and added features.
This package provides the runtime.
This LaTeX package executes programming source codes (including all command line tools) from within LaTeX and embeds the output in the resulting .pdf
file. Many programming languages can be easily used and any command-line executable can be invoked when preparing the .pdf
file from a .tex
file. It is however recommended to use this package in server-mode together with the Python talk2stat
package. Currently, this server-mode supports Julia, MatLab, Python, and R.
Fit the most popular human mortality laws', and construct full and abridge life tables given various input indices. A mortality law is a parametric function that describes the dying-out process of individuals in a population during a significant portion of their life spans. For a comprehensive review of the most important mortality laws see Tabeau (2001) <doi:10.1007/0-306-47562-6_1>. Practical functions for downloading data from various human mortality databases are provided as well.
Finding the best values for user-specified arguments of a prediction algorithm can be difficult, particularly if there is an interaction between argument levels. This package automates the testing of any user-defined prediction algorithm over an arbitrary number of arguments. It includes functions for testing the algorithm over the given arguments with respect to an arbitrary number of user-defined diagnostics, visualising the results of these tests, and finding the optimal argument combinations with respect to each diagnostic.
This package provides a set of functions leading to multivariate response L1 regression. This includes functions on computing Euclidean inner products and norms, weighted least squares estimates on multivariate responses, function to compute fitted values and residuals. This package is a companion to the book "U-Statistics, M-estimation and Resampling", by Arup Bose and Snigdhansu Chatterjee, to appear in 2017 as part of the "Texts and Readings in Mathematics" (TRIM) series of Hindustan Book Agency and Springer-Verlag.
By systematically aggregating and processing textual reports from earthquakes, floods, storms, wildfires, and other natural disasters, the framework enables a holistic assessment of crisis narratives. Intelligent cleaning and normalization techniques transform raw commentary into structured data, ensuring precise extraction of disaster-specific insights. Collective sentiments of affected communities are quantitatively scored and qualitatively categorized, providing a multifaceted view of societal responses under duress. Interactive geographic maps and temporal charts illustrate the evolution and spatial dispersion of emotional reactions and impact indicators.
This package provides a shiny interface for a free, open-source managerial accounting-like system for health care practices. This package allows health care administrators to project revenue with monthly adjustments and procedure-specific boosts up to a 3-year period. Granular data (patient-level) to aggregated data (department- or hospital-level) can all be used as valid inputs provided historical volume and revenue data is available. For more details on managerial accounting techniques, see Brewer et al. (2015, ISBN:9780078025792).
This package provides a function to perform bias diagnostics on linear mixed models fitted with lmer()
from the lme4 package. Implements permutation tests for assessing the bias of fixed effects, as described in Karl and Zimmerman (2021) <doi:10.1016/j.jspi.2020.06.004>. Karl and Zimmerman (2020) <doi:10.17632/tmynggddfm.1> provide R code for implementing the test using mvglmmRank
output. Development of this package was assisted by GPT o1-preview for code structure and documentation.