Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Allows practitioners to determine (i) if two univariate distributions (which can be continuous, discrete, or even mixed) are equal, (ii) how two distributions differ (shape differences, e.g., location, scale, etc.), and (iii) where two distributions differ (at which quantiles), all using nonparametric LP statistics. The primary reference is Jungreis, D. (2019, Technical Report).
An implementation of two interaction indices between extractive activity and groundwater resources based on hazard and vulnerability parameters used in the assessment of natural hazards. One index is based on a discrete choice model and the other is relying on an artificial neural network.
Select optimal functional regression or dichotomized quantile predictors for survival/logistic/numeric outcome and perform optimistic bias correction for any optimally dichotomized numeric predictor(s), as in Yi, et. al. (2023) <doi:10.1016/j.labinv.2023.100158>.
G-computation for a set of time-fixed exposures with quantile-based basis functions, possibly under linearity and homogeneity assumptions. Effect measure modification in this method is a way to assess how the effect of the mixture varies by a binary, categorical or continuous variable. Reference: Alexander P. Keil, Jessie P. Buckley, Katie M. OBrien, Kelly K. Ferguson, Shanshan Zhao, and Alexandra J. White (2019) A quantile-based g-computation approach to addressing the effects of exposure mixtures; <doi:10.1289/EHP5838>.
Enables tidyverse operations on quanteda corpus objects by extending dplyr verbs to work directly with corpus objects and their document-level variables ('docvars'). Implements row operations for subsetting and reordering documents; column operations for managing document variables; grouped operations; and two-table verbs for merging external data. For more on quanteda see Benoit et al. (2018) <doi:10.21105/joss.00774>. For dplyr see Wickham et al. (2023) <doi:10.32614/CRAN.package.dplyr>.
Manages, builds and computes statistics and datasets for the construction of quarterly (sub-annual) life tables by exploiting micro-data from either a general or an insured population. References: Pavà a and Lledó (2022) <doi:10.1111/rssa.12769>. Pavà a and Lledó (2023) <doi:10.1017/asb.2023.16>. Pavà a and Lledó (2025) <doi:10.1371/journal.pone.0315937>. Acknowledgements: The authors wish to thank Conselleria de Educación, Universidades y Empleo, Generalitat Valenciana (grants AICO/2021/257; CIAICO/2024/031), Ministerio de Ciencia e Innovación (grant PID2021-128228NB-I00) and Fundación Mapfre (grant Modelización espacial e intra-anual de la mortalidad en España. Una herramienta automática para el calculo de productos de vida') for supporting this research.
Shewhart quality control charts for continuous, attribute and count data. Cusum and EWMA charts. Operating characteristic curves. Process capability analysis. Pareto chart and cause-and-effect chart. Multivariate control charts.
This package provides seamless access to the QGIS (<https://qgis.org>) processing toolbox using the standalone qgis_process command-line utility. Both native and third-party (plugin) processing providers are supported. Beside referring data sources from file, also common objects from sf', terra and stars are supported. The native processing algorithms are documented by QGIS.org (2024) <https://docs.qgis.org/latest/en/docs/user_manual/processing_algs/>.
Code for centroid, median and quantile classifiers.
Datasets for the book, A Guide to QTL Mapping with R/qtl. Broman and Sen (2009) <doi:10.1007/978-0-387-92125-9>.
This package provides functions and tools for creating, visualizing, and investigating properties of continuous-time quantum walks, including efficient calculation of matrices such as the mixing matrix, average mixing matrix, and spectral decomposition of the Hamiltonian. E. Farhi (1997): <arXiv:quant-ph/9706062v2>; C. Godsil (2011) <arXiv:1103.2578v3>.
The queueing model of visual search models the accuracy and response time data in a visual search experiment using queueing models with finite customer population and stopping criteria of completing the service for finite number of customers. It implements the conceptualization of a hybrid model proposed by Moore and Wolfe (2001), in which visual stimuli enter the processing one after the other and then are identified in parallel. This package provides functions that simulate the specified queueing process and calculate the Wasserstein distance between the empirical response times and the model prediction.
The approach is based on the closed testing procedure to control familywise error rate in a strong sense. The local tests implemented are Wald-type and rank-score. The method is described in De Santis, et al., (2026), <doi:10.48550/arXiv.2511.07999>.
This package provides methods to determine, smooth and plot quantile periodograms for univariate and multivariate time series. See Kley (2016) <doi:10.18637/jss.v070.i03> for a description and tutorial.
An R implementation of quality controlâ based robust LOESS(local polynomial regression fitting) signal correction for metabolomics data analysis, described in Dunn, W., Broadhurst, D., Begley, P. et al. (2011) <doi:10.1038/nprot.2011.335>. The optimisation of LOESS's span parameter using generalized cross-validation (GCV) is provided as an option. In addition to signal correction, qcrlscR includes some utility functions like batch shifting and data filtering.
Non-parametric methods as local normal regression, polynomial local regression and penalized cubic B-splines regression are used to estimate quantiles curves. See Fan and Gijbels (1996) <doi:10.1201/9780203748725> and Perperoglou et al.(2019) <doi:10.1186/s12874-019-0666-3>.
Helps to perform linear regression analysis by reducing manual effort. Reduces the independent variables based on specified p-value and Variance Inflation Factor (VIF) level.
Option pricing (financial derivatives) techniques mainly following textbook Options, Futures and Other Derivatives', 9ed by John C.Hull, 2014. Prentice Hall. Implementations are via binomial tree option model (BOPM), Black-Scholes model, Monte Carlo simulations, etc. This package is a result of Quantitative Financial Risk Management course (STAT 449 and STAT 649) at Rice University, Houston, TX, USA, taught by Oleg Melnikov, statistics PhD student, as of Spring 2015.
Scaling models and classifiers for sparse matrix objects representing textual data in the form of a document-feature matrix. Includes original implementations of Laver', Benoit', and Garry's (2003) <doi:10.1017/S0003055403000698>, Wordscores model, the Perry and Benoit (2017) <doi:10.48550/arXiv.1710.08963> class affinity scaling model, and the Slapin and Proksch (2008) <doi:10.1111/j.1540-5907.2008.00338.x> wordfish model, as well as methods for correspondence analysis, latent semantic analysis, and fast Naive Bayes and linear SVMs specially designed for sparse textual data.
This package provides functions to plot QTL (quantitative trait loci) analysis results and related diagnostics. Part of qtl2', an upgrade of the qtl package to better handle high-dimensional data and complex cross designs.
Generalized eigenvalues and eigenvectors use QZ decomposition (generalized Schur decomposition). The decomposition needs an N-by-N non-symmetric matrix A or paired matrices (A,B) with eigenvalues reordering mechanism. The decomposition functions are mainly based Fortran subroutines in complex*16 and double precision of LAPACK library (version 3.10.0 or later).
This package provides functions to convert data structures among the qtl2', qtl', and DOQTL packages for mapping quantitative trait loci (QTL).
An extensive set of functions to perform Qualitative Comparative Analysis: crisp sets ('csQCA'), temporal ('tQCA'), multi-value ('mvQCA') and fuzzy sets ('fsQCA'), using a GUI - graphical user interface. QCA is a methodology that bridges the qualitative and quantitative divide in social science research. It uses a Boolean minimization algorithm, resulting in a minimal causal configuration associated with a given phenomenon.
This package implements indices of qualitative variation proposed by Wilcox (1973).