Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Multivariate optimal allocation for different domains in one and two stages stratified sample design. R2BEAT extends the Neyman (1934) â Tschuprow (1923) allocation method to the case of several variables, adopting a generalization of the Bethelâ s proposal (1989). R2BEAT develops this methodology but, moreover, it allows to determine the sample allocation in the multivariate and multi-domains case of estimates for two-stage stratified samples. It also allows to perform both Primary Stage Units and Secondary Stage Units selection. This package requires the availability of ReGenesees', that can be installed from <https://github.com/DiegoZardetto/ReGenesees>.
Higher-order spectra or polyspectra of time series, such as bispectrum and bicoherence, have been investigated in abundant literature and applied to problems of signal detection in a wide range of fields. This package aims to provide a simple API to estimate and analyze them. The current implementation is based on Brillinger and Irizarry (1998) <doi:10.1016/S0165-1684(97)00217-X> for estimating bispectrum or bicoherence, Lii and Helland (1981) <doi:10.1145/355958.355961> for cross-bispectrum, and Kim and Powers (1979) <doi:10.1109/TPS.1979.4317207> for cross-bicoherence.
Statistical tools based on the probabilistic properties of the record occurrence in a sequence of independent and identically distributed continuous random variables. In particular, tools to prepare a time series as well as distribution-free trend and change-point tests and graphical tools to study the record occurrence. Details about the implemented tools can be found in Castillo-Mateo et al. (2023a) <doi:10.18637/jss.v106.i05> and Castillo-Mateo et al. (2023b) <doi:10.1016/j.atmosres.2023.106934>.
This package provides a novel bias-bound approach for non-parametric inference is introduced, focusing on both density and conditional expectation estimation. It constructs valid confidence intervals that account for the presence of a non-negligible bias and thus make it possible to perform inference with optimal mean squared error minimizing bandwidths. This package is based on Schennach (2020) <doi:10.1093/restud/rdz065>.
Combine multiple data files from a common directory. The data files will be read into R and bound together, creating a single large data.frame. A general function is provided along with a specific function for data that was collected using the open-source experiment builder OpenSesame <https://osdoc.cogsci.nl/>.
This package provides a pure R implementation of the median cut algorithm. Extracts the dominant colors from an image, and turns them into a scale for use in plots or for fun!
This package provides functions for estimating models using a Hierarchical Bayesian (HB) framework. The flexibility comes in allowing the user to specify the likelihood function directly instead of assuming predetermined model structures. Types of models that can be estimated with this code include the family of discrete choice models (Multinomial Logit, Mixed Logit, Nested Logit, Error Components Logit and Latent Class) as well ordered response models like ordered probit and ordered logit. In addition, the package allows for flexibility in specifying parameters as either fixed (non-varying across individuals) or random with continuous distributions. Parameter distributions supported include normal, positive/negative log-normal, positive/negative censored normal, and the Johnson SB distribution. Kenneth Train's Matlab and Gauss code for doing Hierarchical Bayesian estimation has served as the basis for a few of the functions included in this package. These Matlab/Gauss functions have been rewritten to be optimized within R. Considerable code has been added to increase the flexibility and usability of the code base. Train's original Gauss and Matlab code can be found here: <http://elsa.berkeley.edu/Software/abstracts/train1006mxlhb.html> See Train's chapter on HB in Discrete Choice with Simulation here: <http://elsa.berkeley.edu/books/choice2.html>; and his paper on using HB with non-normal distributions here: <http://eml.berkeley.edu//~train/trainsonnier.pdf>. The authors would also like to thank the invaluable contributions of Stephane Hess and the Choice Modelling Centre: <https://cmc.leeds.ac.uk/>.
We develop the entire solution paths for ROC-SVM presented by Rakotomamonjy. The ROC-SVM solution path algorithm greatly facilitates the tuning procedure for regularization parameter, lambda in ROC-SVM by avoiding grid search algorithm which may be computationally too intensive. For more information on the ROC-SVM, see the report in the ROC Analysis in AI workshop(ROCAI-2004) : Hernà ndez-Orallo, José, et al. (2004) <doi:10.1145/1046456.1046489>.
This package performs robust estimation and inference when using covariate adjustment and/or covariate-adaptive randomization in randomized controlled trials. This package is trimmed to reduce the dependencies and validated to be used across industry. See "FDA's final guidance on covariate adjustment"<https://www.regulations.gov/docket/FDA-2019-D-0934>, Tsiatis (2008) <doi:10.1002/sim.3113>, Bugni et al. (2018) <doi:10.1080/01621459.2017.1375934>, Ye, Shao, Yi, and Zhao (2023)<doi:10.1080/01621459.2022.2049278>, Ye, Shao, and Yi (2022)<doi:10.1093/biomet/asab015>, Rosenblum and van der Laan (2010)<doi:10.2202/1557-4679.1138>, Wang et al. (2021)<doi:10.1080/01621459.2021.1981338>, Ye, Bannick, Yi, and Shao (2023)<doi:10.1080/24754269.2023.2205802>, and Bannick, Shao, Liu, Du, Yi, and Ye (2024)<doi:10.48550/arXiv.2306.10213>.
The Stochastic Dominance (SD) is the classical way of comparing two random prospects, using their distribution functions. Almost Stochastic Dominance (ASD) has also been developed to cover the SD failures due to the extreme utility functions. This package focuses on classical and heuristic methods for testing the first and second SD and ASD methods given the probability mass function (PMF) of the random prospects. The goal is to apply these methods easily, efficiently, and effectively on real-world datasets. For more details see Hanoch and Levy (1969) <doi:10.2307/2296431>, Leshno and Levy (2002) <doi:10.1287/mnsc.48.8.1074.169>, and Tzeng et al. (2012) <doi:10.1287/mnsc.1120.1616>.
Collect your data on digital marketing campaigns from reddit Ads using the Windsor.ai API <https://windsor.ai/api-fields/>.
Unified object oriented interface for multiple independent streams of random numbers from different sources.
New Markov chain Monte Carlo (MCMC) samplers new to be thoroughly tested and their performance accurately assessed. This requires densities that offer challenging properties to the novel sampling algorithms. One such popular problem is the Rosenbrock function. However, while its shape lends itself well to a benchmark problem, no codified multivariate expansion of the density exists. We have developed an extension to this class of distributions and supplied densities and direct sampler functions to assess the performance of novel MCMC algorithms. The functions are introduced in "An n-dimensional Rosenbrock Distribution for MCMC Testing" by Pagani, Wiegand and Nadarajah (2019) <arXiv:1903.09556>.
R functions for generating and/or displaying random Chuck Norris facts. Based on data from the Internet Chuck Norris database ('ICNDb').
Connects dataframes/tables with a remote data source. Raw data downloaded from the data source can be further processed and transformed using data preparation code that is also baked into the dataframe/table. Refreshable dataframes can be shared easily (e.g. as R data files). Their users do not need to care about the inner workings of the data update mechanisms.
Robust covariance estimation for matrix-valued data and data with Kronecker-covariance structure using the Matrix Minimum Covariance Determinant (MMCD) estimators and outlier explanation using and Shapley values.
This package provides a set of functions to perform pathway analysis and meta-analysis from multiple gene expression datasets, as well as visualization of the results. This package wraps functionality from the following packages: Ritchie et al. (2015) <doi:10.1093/nar/gkv007>, Love et al. (2014) <doi:10.1186/s13059-014-0550-8>, Robinson et al. (2010) <doi:10.1093/bioinformatics/btp616>, Korotkevich et al. (2016) <arxiv:10.1101/060012>, Efron et al. (2015) <https://CRAN.R-project.org/package=GSA>, and Gu et al. (2012) <https://CRAN.R-project.org/package=CePa>.
This package provides an R interface for using AmCharts Library. Based on htmlwidgets', it provides a global architecture to generate JavaScript source code for charts. Most of classes in the library have their equivalent in R with S4 classes; for those classes, not all properties have been referenced but can easily be added in the constructors. Complex properties (e.g. JavaScript object) can be passed as named list. See examples at <https://datastorm-open.github.io/introduction_ramcharts/> and <https://www.amcharts.com/> for more information about the library. The package includes the free version of AmCharts Library. Its only limitation is a small link to the web site displayed on your charts. If you enjoy this library, do not hesitate to refer to this page <https://www.amcharts.com/online-store/> to purchase a licence, and thus support its creators and get a period of Priority Support. See also <https://www.amcharts.com/about/> for more information about AmCharts company.
Native R only allows PDF exports of reference manuals. The Rd2md package converts the package documentation files into markdown files and combines them into a markdown version of the package reference manual.
An easy way to get started with Generative Adversarial Nets (GAN) in R. The GAN algorithm was initially described by Goodfellow et al. 2014 <https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf>. A GAN can be used to learn the joint distribution of complex data by comparison. A GAN consists of two neural networks a Generator and a Discriminator, where the two neural networks play an adversarial minimax game. Built-in GAN models make the training of GANs in R possible in one line and make it easy to experiment with different design choices (e.g. different network architectures, value functions, optimizers). The built-in GAN models work with tabular data (e.g. to produce synthetic data) and image data. Methods to post-process the output of GAN models to enhance the quality of samples are available.
An implementation of Bayesian model-averaged t-tests that allows users to draw inferences about the presence versus absence of an effect, variance heterogeneity, and potential outliers. The RoBTT package estimates ensembles of models created by combining competing hypotheses and applies Bayesian model averaging using posterior model probabilities. Users can obtain model-averaged posterior distributions and inclusion Bayes factors, accounting for uncertainty in the data-generating process (Maier et al., 2024, <doi:10.3758/s13423-024-02590-5>). The package also provides a truncated likelihood version of the model-averaged t-test, enabling users to exclude potential outliers without introducing bias (Godmann et al., 2024, <doi:10.31234/osf.io/j9f3s>). Users can specify a wide range of informative priors for all parameters of interest. The package offers convenient functions for summary, visualization, and fit diagnostics.
This package contains functions to interface with variables and variable details sheets, including recoding variables and converting them to PMML.
This package provides a simple WebDAV client that provides functions to fetch and send files or folders to servers using the WebDAV protocol (see RFC 4918 <https://www.rfc-editor.org/rfc/rfc4918>). Only a subset of the protocol is implemented (e.g. file locks are not yet supported).
Robustness -- eXperimental', eXtraneous', or eXtraordinary Functionality for Robust Statistics. Hence methods which are not well established, often related to methods in package robustbase'. Amazingly, BACON()', originally by Billor, Hadi, and Velleman (2000) <doi:10.1016/S0167-9473(99)00101-2> has become established in places. The "barrow wheel" `rbwheel()` is from Stahel and Mächler (2009) <doi:10.1111/j.1467-9868.2009.00706.x>.