mlr3learners
extends mlr3
and mlr3proba
with interfaces to essential machine learning packages on CRAN. This includes, but is not limited to: (penalized) linear and logistic regression, linear and quadratic discriminant analysis, k-nearest neighbors, naive Bayes, support vector machines, and gradient boosting.
The Mechanize library is used for automating interaction with websites. Mechanize automatically stores and sends cookies, follows redirects, and can follow links and submit forms. Form fields can be populated and submitted. Mechanize also keeps track of the sites that you have visited as a history.
This package implements adaptive gPCA
, as described in: Fukuyama, J. (2017) <arXiv:1702.00501>
. The package also includes functionality for applying the method to phyloseq objects so that the method can be easily applied to microbiome data and a shiny app for interactive visualization.
Identifies genome-related molecular traits with significant evidence of genetic regulation and performs a bootstrap procedure to correct estimated effect sizes for over-estimation present in cis-QTL mapping studies (The "Winner's Curse"), described in Huang QQ *et al.* 2018 <doi: 10.1093/nar/gky780>.
This package provides methods for piecewise smooth regression. A piecewise smooth signal is estimated by applying a bootstrapped test recursively (binary segmentation approach). Each bootstrapped test decides whether the underlying signal is smooth on the currently considered subsegment or contains at least one further change-point.
Compute duration curves of daily flow series, both real and modeled, to be compared through indexes of flow duration curves. The package functions include comparative plots and goodness of fit tests. Flow duration curve indexes are based on: Yilmaz et al., (2008) <DOI:10.1029/2007WR006716>.
We consider the non-parametric maximum likelihood estimation of the underlying distribution function, assuming log-concavity, based on mixed-case interval-censored data. The algorithm implemented is base on Chi Wing Chu, Hok Kan Ling and Chaoyu Yuan (2024, <doi:10.48550/arXiv.2411.19878>
).
This package provides tools for Genotype by Environment Interaction (GEI) analysis, using statistical models and visualizations to assess genotype performance across environments. It helps researchers explore interaction effects, stability, and adaptability in multi-environment trials, identifying the best-performing genotypes in different conditions. Which Win Where!
Simple result caching in R based on R.cache. The global environment is not considered when caching results simplifying moving files between multiple instances of R. Relies on more base functions than R.cache (e.g. cached results are saved using saveRDS()
and readRDS()
).
Allows users to analyze text and classify emotions such as happiness, sadness, anger, fear, and neutrality. It combines text preprocessing, TF-IDF (Term Frequency-Inverse Document Frequency) feature extraction, and Random Forest classification to predict emotions and map them to corresponding emojis for enhanced sentiment visualization.
Mass spectrometry (MS) data backend supporting import and export of MS/MS spectra data from Mascot Generic Format (mgf) files. Objects defined in this package are supposed to be used with the Spectra Bioconductor package. This package thus adds mgf file support to the Spectra package.
Extend the bigmemory package with various analytics. Functions bigkmeans and binit may also be used with native R objects. For tapply'-like functions, the bigtabulate package may also be helpful. For linear algebra support, see bigalgebra'. For mutex (locking) support for advanced shared-memory usage, see synchronicity'.
Automated data exploration process for analytic tasks and predictive modeling, so that users could focus on understanding data and extracting insights. The package scans and analyzes each variable, and visualizes them with typical graphical techniques. Common data processing methods are also available to treat and format data.
Estimates unknown historical or archaeological dates subject to relationships with other dates and absolute constraints, derived as marginal densities from the full joint conditional distribution. Includes rule-based estimation of the production dates of artifact types. Collins-Elliott (2024) <https://volweb.utk.edu/~scolli46/sceGUTChronology.pdf>
.
This package provides functions to extract and process data from the FDA Adverse Event Reporting System (FAERS). It facilitates the conversion of raw FAERS data published after 2014Q3 into structured formats for analysis. See Yang et al. (2022) <doi:10.3389/fphar.2021.772768> for related information.
Second-order summary statistics K- and pair-correlation functions describe interactions in point pattern data. This package provides computations to estimate those statistics on inhomogeneous point processes, using the methods of in T Shaw, J Møller, R Waagepetersen, 2020 <doi:10.48550/arXiv.2004.00527>
.
This package provides functions to make inference about the standardized mortality ratio (SMR) when evaluating the effect of a screening program. The package is based on methods described in Sasieni (2003) <doi: 10.1097/00001648-200301000-00026> and Talbot et al. (2011) <doi: 10.1002/sim.4334>.
Matches a data set with semi-structured address data, e.g., street and house number as a concatenated string, wrongly spelled street names or non-existing house numbers to a reference index. The methods are specifically designed for German municipalities ('KOR'-community) and German address schemes.
Generates data based on latent factor models. Data can be continuous, polytomous, dichotomous, or mixed. Skews, cross-loadings, wording effects, population errors, and local dependencies can be added. All parameters can be manipulated. Data categorization is based on Garrido, Abad, and Ponsoda (2011) <doi:10.1177/0013164410389489>.
Simulate lobster catch process in a trap fishery. Factors such as lobster density on ocean floor, their movement, trap saturation and bait shrinkage rate can be modeled. Details of the methods for modeling those processes can be found in: Addison and Bell (1997) <doi:10.1071/MF97169>.
Macros to generate nimble code from a concise syntax. Included are macros for generating linear modeling code using a formula-based syntax and for building for()
loops. For more details review the nimble manual: <https://r-nimble.org/html_manual/cha-writing-models.html#subsec:macros>.
This gadget allows you to use the recipes package belonging to tidymodels to carry out the data preprocessing tasks in an interactive way. Build your recipe by dragging the variables, visually analyze your data to decide which steps to use, add those steps and preprocess your data.
Sometimes it's useful to know some information about your user in a Shiny app. The available information is: browser name (such as Chrome or Safari') and version, device type (mobile or desktop), operating system (such as Windows or Mac or Android') and version, and browser dimensions.
This package provides functionalities based on the paper "Time Varying Dictionary and the Predictive Power of FED Minutes" (Lima, 2018) <doi:10.2139/ssrn.3312483>. It selects the most predictive terms, that we call time-varying dictionary using supervised machine learning techniques as lasso and elastic net.