Waiting list management using queuing theory to analyse, predict and manage queues, based on the approach described in Fong et al. (2022) <doi:10.1101/2022.08.23.22279117>. Aimed at UK National Health Service (NHS) applications, waiting list summary statistics, target-value calculations, waiting list simulation, and scheduling functions are included.
This package performs inference of several model-free group contrast measures, which include difference/ratio of cumulative incidence rates at given time points, quantiles, and restricted mean survival times (RMST). Two kinds of covariate adjustment procedures (i.e., regression and augmentation) for inference of the metrics based on RMST are also included.
Changepoint detection algorithms for R are widespread but have different interfaces and reporting conventions. This makes the comparative analysis of results difficult. We solve this problem by providing a tidy, unified interface for several different changepoint detection algorithms. We also provide consistent numerical and graphical reporting leveraging the broom and ggplot2 packages.
The SplicingFactory R package uses transcript-level expression values to analyze splicing diversity based on various statistical measures, like Shannon entropy or the Gini index. These measures can quantify transcript isoform diversity within samples or between conditions. Additionally, the package analyzes the isoform diversity data, looking for significant changes between conditions.
r-circrnaprofiler is a computational framework for a comprehensive in silico analysis of circular RNA (circRNAs). This computational framework allows combining and analyzing circRNAs previously detected by multiple publicly available annotation-based circRNA detection tools. It covers different aspects of circRNAs analysis from differential expression analysis, evolutionary conservation, biogenesis to functional analysis.
Access Google Cloud machine learning APIs for text and speech tasks. Use the Cloud Translation API for text detection and translation, the Natural Language API to analyze sentiment, entities, and syntax, the Cloud Speech API to transcribe audio to text, and the Cloud Text-to-Speech API to synthesize text into audio files.
This package provides a suite of utility functions providing functionality commonly needed for production level projects such as logging, error handling, cache management and date-time parsing. Functions for date-time parsing and formatting require that time zones be specified explicitly, avoiding a common source of error when working with environmental time series.
Leverages the R language to automate latent variable model estimation and interpretation using Mplus', a powerful latent variable modeling program developed by Muthen and Muthen (<https://www.statmodel.com>). Specifically, this package provides routines for creating related groups of models, running batches of models, and extracting and tabulating model parameters and fit statistics.
This package provides a curated dataset of RNA-Seq samples. The samples are MDI-induced pre-phagocytes (3T3-L1) at different time points/stage of differentiation. The package document the data collection, pre-processing and processing. In addition to the documentation, the package contains the scripts that was used to generated the data.
Variance-stabilizing transformations help with the analysis of heteroskedastic data (i.e., data where the variance is not constant, like count data). This package provide two types of variance stabilizing transformations: (1) methods based on the delta method (e.g., acosh', log(x+1)'), (2) model residual based (Pearson and randomized quantile residuals).
Features the multiple polynomial quadratic sieve (MPQS) algorithm for factoring large integers and a vectorized factoring function that returns the complete factorization of an integer. The MPQS is based off of the seminal work of Carl Pomerance (1984) <doi:10.1007/3-540-39757-4_17> along with the modification of multiple polynomials introduced by Peter Montgomery and J. Davis as outlined by Robert D. Silverman (1987) <doi:10.1090/S0025-5718-1987-0866119-8>. Utilizes the C library GMP (GNU Multiple Precision Arithmetic). For smaller integers, a simple Elliptic Curve algorithm is attempted followed by a constrained version of Pollard's rho algorithm. The Pollard's rho algorithm is the same algorithm used by the factorize function in the gmp package.
Spatial regression models with compositional responses using the alpha--transformation. Relevant papers include: Tsagris M. (2025), <doi:10.48550/arXiv.2510.12663>, Tsagris M. (2015), <https://soche.cl/chjs/volumes/06/02/Tsagris(2015).pdf>, Tsagris M.T., Preston S. and Wood A.T.A. (2011), <doi:10.48550/arXiv.1106.1451>.
Predicts enrollment and events assumed enrollment and treatment-specific time-to-event models, and calculates test statistics for time-to-event data with cured population based on the simulation.Methods for prediction event in the existence of cured population are as described in : Chen, Tai-Tsang(2016) <doi:10.1186/s12874-016-0117-3>.
This module, ReadKey, provides ioctl control for terminals so the input modes can be changed (thus allowing reads of a single character at a time), and also provides non-blocking reads of stdin, as well as several other terminal related features, including retrieval/modification of the screen size, and retrieval/modification of the control characters.
This package provides functions to build, evaluate, and visualize insurance rating models. It simplifies the process of modeling premiums, and allows to analyze insurance risk factors effectively. The package employs a data-driven strategy for constructing insurance tariff classes, drawing on the work of Antonio and Valdez (2012) <doi:10.1007/s10182-011-0152-7>.
Mixtures of Poisson Generalized Linear Models for high dimensional count data clustering. The (multivariate) responses can be partitioned into set of blocks. Three different parameterizations of the linear predictor are considered. The models are estimated according to the EM algorithm with an efficient initialization scheme <doi:10.1016/j.csda.2014.07.005>.
This package implements the nonparametric quantile regression method developed by Belloni, Chernozhukov, and Fernandez-Val (2011) to partially linear quantile models. Provides point estimates of the conditional quantile function and its derivatives based on series approximations to the nonparametric part of the model. Provides pointwise and uniform confidence intervals using analytic and resampling methods.
This package provides an interface to access pre-trained models for on-target and off-target gRNA activity prediction algorithms implemented in the crisprScore package. Pre-trained model data are stored in the ExperimentHub database. Users should consider using the crisprScore package directly to use and load the pre-trained models.
This package is the companion of the `CytoPipeline` package. It provides GUI's (shiny apps) for the visualization of flow cytometry data analysis pipelines that are run with `CytoPipeline`. Two shiny applications are provided, i.e. an interactive flow frame assessment and comparison tool and an interactive scale transformations visualization and adjustment tool.
Calculates significant annotations (categories) in each of two (or more) feature (i.e. gene) lists, determines the overlap between the annotations, and returns graphical and tabular data about the significant annotations and which combinations of feature lists the annotations were found to be significant. Interactive exploration is facilitated through the use of RCytoscape (heavily suggested).
This package provides a toolkit for simulating differential microbiome data designed for longitudinal analyses. Several functional forms may be specified for the mean trend. Observations are drawn from a multivariate normal model. The objective of this package is to be able to simulate data in order to accurately compare different longitudinal methods for differential abundance.
This package detects naive associations between omics features and metadata in cross-sectional data-sets using non-parametric tests. In a second step, confounding effects between metadata associated to the same omics feature are detected and labeled using nested post-hoc model comparison tests. The generated output can be graphically summarized using the built-in plotting function.
The number of distinct alleles observed in a DNA mixture is informative of the number of contributors to the mixture. The package provides methods for computing the probability distribution of the number of distinct alleles in a mixture for a given set of allele frequencies. The mixture contributors may be related according to a provided pedigree.
Datasets used in the book "Categorical Data Analysis" by Agresti (2012, ISBN:978-0-470-46363-5) but not printed in the book. Datasets and help pages were automatically produced from the source <https://users.stat.ufl.edu/~aa/cda/data.html> by the R script foo.R, which can be found in the GitHub repository.