_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-blob 1.2.4
Propagated dependencies: r-rlang@1.1.4 r-vctrs@0.6.5
Channel: guix
Location: gnu/packages/statistics.scm (gnu packages statistics)
Home page: https://github.com/hadley/blob
Licenses: GPL 3+
Synopsis: Simple S3 Class for representing vectors of binary data
Description:

Raw vectors in R are useful for storing a single binary object. What if you want to put a vector of them in a data frame? The blob package provides the blob object, a list of raw vectors, suitable for use as a column in data frame.

r-rdfp 0.1.4
Propagated dependencies: r-xml2@1.3.6 r-xml@3.99-0.17 r-readr@2.1.5 r-purrr@1.0.2 r-plyr@1.8.9 r-lubridate@1.9.3 r-httr@1.4.7 r-dplyr@1.1.4 r-data-table@1.16.2 r-curl@6.0.1
Channel: guix-cran
Location: guix-cran/packages/r.scm (guix-cran packages r)
Home page: https://github.com/StevenMMortimer/rdfp
Licenses: Expat
Synopsis: An Implementation of the 'DoubleClick for Publishers' API
Description:

This package provides functions to interact with the Google DoubleClick for Publishers (DFP) API <https://developers.google.com/ad-manager/api/start> (recently renamed to Google Ad Manager'). This package is automatically compiled from the API WSDL (Web Service Description Language) files to dictate how the API is structured. Theoretically, all API actions are possible using this package; however, care must be taken to format the inputs correctly and parse the outputs correctly. Please see the Google Ad Manager API reference <https://developers.google.com/ad-manager/api/rel_notes> and this package's website <https://stevenmmortimer.github.io/rdfp/> for more information, documentation, and examples.

r-rpca 0.2.3
Channel: guix-cran
Location: guix-cran/packages/r.scm (guix-cran packages r)
Home page: https://cran.r-project.org/package=rpca
Licenses: GPL 2 GPL 3
Synopsis: RobustPCA: Decompose a Matrix into Low-Rank and Sparse Components
Description:

Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Candes, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis?. Journal of the ACM (JACM), 58(3), 11. prove that we can recover each component individually under some suitable assumptions. It is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the L1 norm. This package implements this decomposition algorithm resulting with Robust PCA approach.

r-rbtt 0.1.0
Propagated dependencies: r-data-table@1.16.2
Channel: guix-cran
Location: guix-cran/packages/r.scm (guix-cran packages r)
Home page: https://cran.r-project.org/package=rbtt
Licenses: GPL 3 FSDG-compatible
Synopsis: Alternative Bootstrap-Based t-Test Aiming to Reduce Type-I Error for Non-Negative, Zero-Inflated Data
Description:

Tu & Zhou (1999) <doi:10.1002/(SICI)1097-0258(19991030)18:20%3C2749::AID-SIM195%3E3.0.CO;2-C> showed that comparing the means of populations whose data-generating distributions are non-negative with excess zero observations is a problem of great importance in the analysis of medical cost data. In the same study, Tu & Zhou discuss that it can be difficult to control type-I error rates of general-purpose statistical tests for comparing the means of these particular data sets. This package allows users to perform a modified bootstrap-based t-test that aims to better control type-I error rates in these situations.

r-rspc 1.2.2
Channel: guix-cran
Location: guix-cran/packages/r.scm (guix-cran packages r)
Home page: https://cran.r-project.org/package=Rspc
Licenses: GPL 3
Synopsis: Nelson Rules for Control Charts
Description:

Implementation of Nelson rules for control charts in R'. The Rspc implements some Statistical Process Control methods, namely Levey-Jennings type of I (individuals) chart, Shewhart C (count) chart and Nelson rules (as described in Montgomery, D. C. (2013) Introduction to statistical quality control. Hoboken, NJ: Wiley.). Typical workflow is taking the time series, specify the control limits, and list of Nelson rules you want to evaluate. There are several options how to modify the rules (one sided limits, numerical parameters of rules, etc.). Package is also capable of calculating the control limits from the data (so far only for i-chart and c-chart are implemented).

r-rwnn 0.4
Propagated dependencies: r-rcpparmadillo@14.0.2-1 r-rcpp@1.0.13-1 r-randtoolbox@2.0.5 r-quadprog@1.5-8
Channel: guix-cran
Location: guix-cran/packages/r.scm (guix-cran packages r)
Home page: https://cran.r-project.org/package=RWNN
Licenses: Expat
Synopsis: Random Weight Neural Networks
Description:

Creation, estimation, and prediction of random weight neural networks (RWNN), Schmidt et al. (1992) <doi:10.1109/ICPR.1992.201708>, including popular variants like extreme learning machines, Huang et al. (2006) <doi:10.1016/j.neucom.2005.12.126>, sparse RWNN, Zhang et al. (2019) <doi:10.1016/j.neunet.2019.01.007>, and deep RWNN, Henrà quez et al. (2018) <doi:10.1109/IJCNN.2018.8489703>. It further allows for the creation of ensemble RWNNs like bagging RWNN, Sui et al. (2021) <doi:10.1109/ECCE47101.2021.9595113>, boosting RWNN, stacking RWNN, and ensemble deep RWNN, Shi et al. (2021) <doi:10.1016/j.patcog.2021.107978>.

r-rqcc 2.22.12
Channel: guix-cran
Location: guix-cran/packages/r.scm (guix-cran packages r)
Home page: https://AppliedStat.GitHub.io/R/
Licenses: GPL 2 GPL 3
Synopsis: Robust Quality Control Chart
Description:

Constructs various robust quality control charts based on the median or Hodges-Lehmann estimator (location) and the median absolute deviation (MAD) or Shamos estimator (scale). The estimators used for the robust control charts are all unbiased with a sample of finite size. For more details, see Park, Kim and Wang (2022) <doi:10.1080/03610918.2019.1699114>. In addition, using this R package, the conventional quality control charts such as X-bar, S, R, p, np, u, c, g, h, and t charts are also easily constructed. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C1091319).

r-boom 0.9.15
Propagated dependencies: r-mass@7.3-61
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=Boom
Licenses: LGPL 2.1 FSDG-compatible
Synopsis: Bayesian Object Oriented Modeling
Description:

This package provides a C++ library for Bayesian modeling, with an emphasis on Markov chain Monte Carlo. Although boom contains a few R utilities (mainly plotting functions), its primary purpose is to install the BOOM C++ library on your system so that other packages can link against it.

r-bass 1.3.1
Propagated dependencies: r-truncdist@1.0-2 r-hypergeo@1.2-13
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BASS
Licenses: GPL 3
Synopsis: Bayesian Adaptive Spline Surfaces
Description:

Bayesian fitting and sensitivity analysis methods for adaptive spline surfaces described in <doi:10.18637/jss.v094.i08>. Built to handle continuous and categorical inputs as well as functional or scalar output. An extension of the methodology in Denison, Mallick and Smith (1998) <doi:10.1023/A:1008824606259>.

r-bgev 0.1
Propagated dependencies: r-mass@7.3-61 r-envstats@3.0.0 r-deoptim@2.2-8
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bgev
Licenses: GPL 3
Synopsis: Bimodal GEV Distribution with Location Parameter
Description:

Density, distribution function, quantile function random generation and estimation of bimodal GEV distribution given in Otiniano et al. (2023) <doi:10.1007/s10651-023-00566-7>. This new generalization of the well-known GEV (Generalized Extreme Value) distribution is useful for modeling heterogeneous bimodal data from different areas.

r-ccda 1.1.1
Propagated dependencies: r-mass@7.3-61
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=ccda
Licenses: GPL 2
Synopsis: Combined Cluster and Discriminant Analysis
Description:

This package implements the combined cluster and discriminant analysis method for finding homogeneous groups of data with known origin as described in Kovacs et. al (2014): Classification into homogeneous groups using combined cluster and discriminant analysis (CCDA). Environmental Modelling & Software. <doi:10.1016/j.envsoft.2014.01.010>.

r-clap 0.1.0
Propagated dependencies: r-rlang@1.1.4 r-mclust@6.1.1 r-fnn@1.1.4.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/pridiltal/clap
Licenses: GPL 3
Synopsis: Detecting Class Overlapping Regions in Multidimensional Data
Description:

The issue of overlapping regions in multidimensional data arises when different classes or clusters share similar feature representations, making it challenging to delineate distinct boundaries between them accurately. This package provides methods for detecting and visualizing these overlapping regions using partitional clustering techniques based on nearest neighbor distances.

r-fpp3 1.0.1
Propagated dependencies: r-tsibbledata@0.4.1 r-tsibble@1.1.6 r-tidyr@1.3.1 r-tibble@3.2.1 r-rstudioapi@0.17.1 r-purrr@1.0.2 r-lubridate@1.9.3 r-ggplot2@3.5.1 r-feasts@0.4.1 r-fabletools@0.5.0 r-fable@0.4.1 r-dplyr@1.1.4 r-crayon@1.5.3 r-cli@3.6.3
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://pkg.robjhyndman.com/fpp3/
Licenses: GPL 3
Synopsis: Data for "Forecasting: Principles and Practice" (3rd Edition)
Description:

All data sets required for the examples and exercises in the book "Forecasting: principles and practice" by Rob J Hyndman and George Athanasopoulos <https://OTexts.com/fpp3/>. All packages required to run the examples are also loaded. Additional data sets not used in the book are also included.

r-gwrr 0.2-2
Propagated dependencies: r-lars@1.3 r-fields@16.3
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=gwrr
Licenses: GPL 2+
Synopsis: Fits Geographically Weighted Regression Models with Diagnostic Tools
Description:

Fits geographically weighted regression (GWR) models and has tools to diagnose and remediate collinearity in the GWR models. Also fits geographically weighted ridge regression (GWRR) and geographically weighted lasso (GWL) models. See Wheeler (2009) <doi:10.1068/a40256> and Wheeler (2007) <doi:10.1068/a38325> for more details.

r-hk80 0.0.2
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://github.com/helixcn/
Licenses: GPL 2
Synopsis: Conversion Tools for HK80 Geographical Coordinate System
Description:

This is a collection of functions for converting coordinates between WGS84UTM, WGS84GEO, HK80UTM, HK80GEO and HK1980GRID Coordinate Systems used in Hong Kong SAR, based on the algorithms described in Explanatory Notes on Geodetic Datums in Hong Kong by Survey and Mapping Office Lands Department, Hong Kong Government (1995).

r-hset 0.1.1
Propagated dependencies: r-hash@2.2.6.3
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://cran.r-project.org/package=hset
Licenses: Expat
Synopsis: Sets of Numbers Implemented with Hash Tables
Description:

Implementation of S4 class of sets and multisets of numbers. The implementation is based on the hash table from the package hash'. Quick operations are allowed when the set is a dynamic object. The implementation is discussed in detail in Ceoldo and Wit (2023) <arXiv:2304.09809>.

r-ijse 0.1.1
Propagated dependencies: r-posterior@1.6.0 r-brms@2.22.0
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=IJSE
Licenses: Expat
Synopsis: Infinite-Jackknife-Based Standard Errors for 'brms' Models
Description:

This package provides a function to calculate infinite-jackknife-based standard errors for fixed effects parameters in brms models, handling both clustered and independent data. References: Ji et al. (2024) <doi:10.48550/arXiv.2407.09772>; Giordano et al. (2024) <doi:10.48550/arXiv.2305.06466>.

r-mefm 0.1.1
Propagated dependencies: r-tensormiss@1.1.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MEFM
Licenses: GPL 3
Synopsis: Perform MEFM Estimation on Matrix Time Series
Description:

To perform main effect matrix factor model (MEFM) estimation for a given matrix time series as described in Lam and Cen (2024) <doi:10.48550/arXiv.2406.00128>. Estimation of traditional matrix factor models is also supported. Supplementary functions for testing MEFM over factor models are included.

r-mtar 0.1.1
Propagated dependencies: r-matrix@1.7-1 r-mass@7.3-61 r-compquadform@1.4.3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MTAR
Licenses: GPL 2+
Synopsis: Multi-Trait Analysis of Rare-Variant Association Study
Description:

Perform multi-trait rare-variant association tests using the summary statistics and adjust for possible sample overlap. Package is based on "Multi-Trait Analysis of Rare-Variant Association Summary Statistics using MTAR" by Luo, L., Shen, J., Zhang, H., Chhibber, A. Mehrotra, D.V., Tang, Z., 2019 (submitted).

r-opts 0.1
Propagated dependencies: r-mass@7.3-61 r-cvtools@0.3.3 r-changepoint@2.3
Channel: guix-cran
Location: guix-cran/packages/o.scm (guix-cran packages o)
Home page: https://cran.r-project.org/package=OPTS
Licenses: GPL 2
Synopsis: Optimization via Subsampling (OPTS)
Description:

Subsampling based variable selection for low dimensional generalized linear models. The methods repeatedly subsample the data minimizing an information criterion (AIC/BIC) over a sequence of nested models for each subsample. Marinela Capanu, Mihai Giurcanu, Colin B Begg, Mithat Gonen, Subsampling based variable selection for generalized linear models.

r-posi 1.1
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=PoSI
Licenses: GPL 3
Synopsis: Valid Post-Selection Inference for Linear LS Regression
Description:

In linear LS regression, calculate for a given design matrix the multiplier K of coefficient standard errors such that the confidence intervals [b - K*SE(b), b + K*SE(b)] have a guaranteed coverage probability for all coefficient estimates b in any submodels after performing arbitrary model selection.

r-pins 1.4.0
Propagated dependencies: r-yaml@2.3.10 r-withr@3.0.2 r-whisker@0.4.1 r-tibble@3.2.1 r-rlang@1.1.4 r-rappdirs@0.3.3 r-purrr@1.0.2 r-magrittr@2.0.3 r-lifecycle@1.0.4 r-jsonlite@1.8.9 r-httr@1.4.7 r-glue@1.8.0 r-generics@0.1.3 r-fs@1.6.5 r-digest@0.6.37 r-cli@3.6.3
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://pins.rstudio.com/
Licenses: FSDG-compatible
Synopsis: Pin, Discover, and Share Resources
Description:

Publish data sets, models, and other R objects, making it easy to share them across projects and with your colleagues. You can pin objects to a variety of "boards", including local folders (to share on a networked drive or with DropBox'), Posit Connect', AWS S3', and more.

r-qrnn 2.1.1
Channel: guix-cran
Location: guix-cran/packages/q.scm (guix-cran packages q)
Home page: https://cran.r-project.org/package=qrnn
Licenses: GPL 2
Synopsis: Quantile Regression Neural Network
Description:

Fit quantile regression neural network models with optional left censoring, partial monotonicity constraints, generalized additive model constraints, and the ability to fit multiple non-crossing quantile functions following Cannon (2011) <doi:10.1016/j.cageo.2010.07.005> and Cannon (2018) <doi:10.1007/s00477-018-1573-6>.

r-smtl 0.1.0
Propagated dependencies: r-juliaconnector@1.1.4 r-juliacall@0.17.6 r-glmnet@4.1-8 r-dplyr@1.1.4 r-caret@6.0-94
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/gloewing/sMTL
Licenses: Expat
Synopsis: Sparse Multi-Task Learning
Description:

This package implements L0-constrained Multi-Task Learning and domain generalization algorithms. The algorithms are coded in Julia allowing for fast implementations of the coordinate descent and local combinatorial search algorithms. For more details, see a preprint of the paper: Loewinger et al., (2022) <arXiv:2212.08697>.

Page: 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511
Total results: 36249