Evaluate and validate the Geboes score for histological assessment of inflammation in ulcerative colitis. The original Geboes score from Geboes, et al. (2000) <doi:10.1136/gut.47.3.404>, binary version from Li, et al. (2019) <doi:10.1093/ecco-jcc/jjz022>, and continuous version from Magro, et al. (2020) <doi:10.1093/ecco-jcc/jjz123> are all described and implemented.
It analyzes raster maps and other information as input/output files from the Hydrological Distributed Model GEOtop. It contains functions and methods to import maps and other keywords from geotop.inpts file. Some examples with simulation cases of GEOtop 2.x/3.x are presented in the package. Any information about the GEOtop Distributed Hydrological Model can be found in the provided documentation.
mirTarRnaSeq
R package can be used for interactive mRNA
miRNA
sequencing statistical analysis. This package utilizes expression or differential expression mRNA
and miRNA
sequencing results and performs interactive correlation and various GLMs (Regular GLM, Multivariate GLM, and Interaction GLMs ) analysis between mRNA
and miRNA
expriments. These experiments can be time point experiments, and or condition expriments.
Spatial transcriptomic technologies have helped to resolve the connection between gene expression and the 2D orientation of tissues relative to each other. However, the limited single-cell resolution makes it difficult to highlight the most important molecular interactions in these tissues. SpaceMarkers
, R/Bioconductor software, can help to find molecular interactions, by identifying genes associated with latent space interactions in spatial transcriptomics.
EASY-ROUTES is yet another routes handling system on top of Hunchentoot. It's just glue code for Restas routing subsystem (CL-ROUTES).
It supports:
dispatch based on HTTP method
arguments extraction from the url path
decorators
URL generation from route names
This package provides EASY-ROUTES, EASY-ROUTES+DJULA and EASY-ROUTES+ERRORS systems.
Efficient Markov Chain Monte Carlo (MCMC) algorithms for the fully Bayesian estimation of vectorautoregressions (VARs) featuring stochastic volatility (SV). Implements state-of-the-art shrinkage priors following Gruber & Kastner (2023) <doi:10.48550/arXiv.2206.04902>
. Efficient equation-per-equation estimation following Kastner & Huber (2020) <doi:10.1002/for.2680> and Carrerio et al. (2021) <doi:10.1016/j.jeconom.2021.11.010>.
Aids in learning statistical functions incorporating the result of calculus done with each function and how they are obtained, that is, which equation and variables are used. Also for all these equations and their related variables detailed explanations and interactive exercises are also included. All these characteristics allow to the package user to improve the learning of statistics basics by means of their use.
This package provides functions for fitting and validation of models for subgroup identification and personalized medicine / precision medicine under the general subgroup identification framework of Chen et al. (2017) <doi:10.1111/biom.12676>. This package is intended for use for both randomized controlled trials and observational studies and is described in detail in Huling and Yu (2021) <doi:10.18637/jss.v098.i05>.
The original definition of the two and three dimensional Kolmogorov-Smirnov two-sample test statistics given by Peacock (1983) is implemented. Two R-functions: peacock2 and peacock3, are provided to compute the test statistics in two and three dimensional spaces, respectively. Note the Peacock test is different from the Fasano and Franceschini test (1987). The latter is a variant of the Peacock test.
Stores objects (e.g. neural networks) that are needed for using Sojourn accelerometer methods. For more information, see Lyden K, Keadle S, Staudenmayer J, & Freedson P (2014) <doi:10.1249/MSS.0b013e3182a42a2d>, Ellingson LD, Schwabacher IJ, Kim Y, Welk GJ, & Cook DB (2016) <doi:10.1249/MSS.0000000000000915>, and Hibbing PR, Ellingson LD, Dixon PM, & Welk GJ (2018) <doi:10.1249/MSS.0000000000001486>.
This package provides three basic functions that support an implementation of Case 2 (profile case) best-worst scaling. The first is to convert an orthogonal main-effect design into questions, the second is to create a dataset suitable for analysis, and the third is to calculate count-based scores. For details, see Aizaki and Fogarty (2019) <doi:10.1016/j.jocm.2019.100171>.
Semi-parametric estimation problem can be solved by two-step Newton-Raphson iteration. The implicit profiling method<arXiv:2108.07928>
is an improved method of two-step NR iteration especially for the implicit-bundled type of the parametric part and non-parametric part. This package provides a function semislv()
supporting the above two methods and numeric derivative approximation for unprovided Jacobian matrix.
This package contains diverse functionality to extend the usage of the iSEE
package, including additional classes for the panels or modes facilitating the analysis of pathway analysis results. This package does not perform pathway analysis. Instead, it provides methods to embed precomputed pathway analysis results in a SummarizedExperiment
object, in a manner that is compatible with interactive visualisation in iSEE
applications.
The tuberculosis R/Bioconductor package features tuberculosis gene expression data for machine learning. All human samples from GEO that did not come from cell lines, were not taken postmortem, and did not feature recombination have been included. The package has more than 10,000 samples from both microarray and sequencing studies that have been processed from raw data through a hyper-standardized, reproducible pipeline.
Ray is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a set of AI libraries for simplifying ML compute. These are the provided Ray AI libraries:
Data: Scalable datasets for ML;
Train: Distributed training;
Tune: Scalable hyperparameter tuning;
RLlib: Scalable reinforcement learning;
Serve: Scalable and programmable serving.
This package provides functions for processing and analyzing survey data from the All of Us Social Determinants of Health (AOUSDOH) program, including tools for calculating health and well-being scores, recoding variables, and simplifying survey data analysis. For more details see - Koleck TA, Dreisbach C, Zhang C, Grayson S, Lor M, Deng Z, Conway A, Higgins PDR, Bakken S (2024) <doi:10.1093/jamia/ocae214>.
This package performs nonlinear Invariant Causal Prediction to estimate the causal parents of a given target variable from data collected in different experimental or environmental conditions, extending Invariant Causal Prediction from Peters, Buehlmann and Meinshausen (2016), <arXiv:1501.01332>
, to nonlinear settings. For more details, see C. Heinze-Deml, J. Peters and N. Meinshausen: Invariant Causal Prediction for Nonlinear Models', <arXiv:1706.08576>
.
ChIPanalyser
is a package to predict and understand TF binding by utilizing a statistical thermodynamic model. The model incorporates 4 main factors thought to drive TF binding: Chromatin State, Binding energy, Number of bound molecules and a scaling factor modulating TF binding affinity. Taken together, ChIPanalyser
produces ChIP-like
profiles that closely mimic the patterns seens in real ChIP-seq
data.
An interactive web application for quality control, filtering and trimming of FASTQ files. This user-friendly tool combines a pipeline for data processing based on Biostrings and ShortRead
infrastructure, with a cutting-edge visual environment. Single-Read and Paired-End files can be locally processed. Diagnostic interactive plots (CG content, per-base sequence quality, etc.) are provided for both the input and output files.
NetPathMiner
is a general framework for network path mining using genome-scale networks. It constructs networks from KGML, SBML and BioPAX
files, providing three network representations, metabolic, reaction and gene representations. NetPathMiner
finds active paths and applies machine learning methods to summarize found paths for easy interpretation. It also provides static and interactive visualizations of networks and paths to aid manual investigation.
This package provides a statistical method to impute the missing values in accelerometer data. The methodology includes both parametric and semi-parametric multiple imputations under the zero-inflated Poisson lognormal model. It also provides multiple functions to preprocess the accelerometer data previous to the missing data imputation. These include detecting the wearing and the non-wearing time, selecting valid days and subjects, and creating plots.
This package provides a friendly interface for modifying data frames with a sequence of piped commands built upon the tidyverse Wickham et al., (2019) <doi:10.21105/joss.01686> . The majority of commands wrap dplyr mutate statements in a convenient way to concisely solve common issues that arise when tidying small to medium data sets. Includes smart defaults and allows flexible selection of columns via tidyselect'.
Mass spectrometry (MS) data backend supporting import and handling of MS/MS spectra from NIST MSP Format (msp) files. Import of data from files with different MSP *flavours* is supported. Objects from this package add support for MSP files to Bioconductor's Spectra package. This package is thus not supposed to be used without the Spectra package that provides a complete infrastructure for MS data handling.
This is an implementation of the Future API on top of the callr package. This allows you to process futures, as defined by the future package, in parallel out of the box, on your local machine. Contrary to backends relying on the parallel package (e.g. future::multisession
) and socket connections, the callr backend provided here can run more than 125 parallel R processes.