Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to compute recentered influence functions (RIF) of a distributional variable at the mean, quantiles, variance, gini or any custom functional of interest. The package allows to regress the RIF on any number of covariates. Generic print, plot and summary functions are also provided. Reference: Firpo, Sergio, Nicole M. Fortin, and Thomas Lemieux. (2009) <doi:10.3982/ECTA6822>. "Unconditional Quantile Regressions.".
The RCC_PCA criterion is a tool to determine the optimal number of components to retain in PCA;See Alshammri (2021).
Compute spatially explicit land-use metrics for stream survey sites in GRASS GIS and R as an open-source implementation of IDW-PLUS (Inverse Distance Weighted Percent Land Use for Streams). The package includes functions for preprocessing digital elevation and streams data, and one function to compute all the spatially explicit land use metrics described in Peterson et al. (2011) <doi:10.1111/j.1365-2427.2010.02507.x> and previously implemented by Peterson and Pearse (2017) <doi:10.1111/1752-1688.12558> in ArcGIS-Python as IDW-PLUS.
Estimation of reproduction numbers for disease outbreak, based on incidence data. The R0 package implements several documented methods. It is therefore possible to compare estimations according to the methods used. Depending on the methods requested by user, basic reproduction number (commonly denoted as R0) or real-time reproduction number (referred to as R(t)) is computed, along with a 95% Confidence Interval. Plotting outputs will give different graphs depending on the methods requested : basic reproductive number estimations will only show the epidemic curve (collected data) and an adjusted model, whereas real-time methods will also show the R(t) variations throughout the outbreak time period. Sensitivity analysis tools are also provided, and allow for investigating effects of varying Generation Time distribution or time window on estimates.
This package provides a framework with tools to compare two random variables via stochastic dominance. See the README.md at <https://github.com/EtorArza/RVCompare> for a quick start guide. It can compute the Cp and Cd of two probability distributions and the Cumulative Difference Plot as explained in E. Arza (2022) <doi:10.1080/10618600.2022.2084405>. Uses bootstrap or DKW-bounds to compute the confidence bands of the cumulative distributions. These two methods are described in B. Efron. (1979) <doi:10.1214/aos/1176344552> and P. Massart (1990) <doi:10.1214/aop/1176990746>.
Implementation of the methods described in the paper with the above title: Langsrud, Ã . (2019) <doi:10.1007/s11222-018-9848-9>. The package can be used to generate synthetic or hybrid continuous microdata, and the relationship to the original data can be controlled in several ways. A function for replacing suppressed tabular cell frequencies with decimal numbers is included.
The goal of rlowdb is to provide a lightweight, file-based JSON database. Inspired by LowDB in JavaScript', it generates an intuitive interface for storing, retrieving, updating, and querying structured data without requiring a full-fledged database system. Ideal for prototyping, small-scale applications, and lightweight data management needs.
This package provides a framework for the measurement and partitioning of the (similarity-sensitive) biodiversity of a metacommunity and its constituent subcommunities. Richard Reeve, et al. (2016) <arXiv:1404.6520v3>.
Easily Download Analysis-Ready Crash Data from the U.S. National Highway Traffic Safety Administration.
Build regular expressions piece by piece using human readable code. This package contains core functionality, and is primarily intended to be used by package developers.
Calculates robust Matthews Correlation Coefficient (MCC) and robust F-Beta Scores, as introduced by Holzmann and Klar (2024) <doi:10.48550/arXiv.2404.07661>. These performance metrics are designed for imbalanced classification problems. Plots the receiver operating characteristic curve (ROC curve) together with the recall / 1-precision curve.
Assists for presentation and visualization of data from the Norwegian Health Quality Registries following the standardization based on the requirement specified by the National Service for Health Quality Registries. This requirement can be accessed from (<https://www.kvalitetsregistre.no/resultater-til-publisering-pa-nett>). Unfortunately the website is only available in Norwegian.
R implementation of Maximum Likelihood Principal Component Analysis The main idea of this package is to have an alternative way of PCA for subspace modeling that considers measurement errors. More details can be found in Peter D. Wentzell (2009) <doi:10.1016/B978-0-444-64165-6.03029-9>.
This package performs RNA emulation and active learning proposed by Heo and Sung (2025) <doi:10.1080/00401706.2024.2376173> for multi-fidelity computer experiments. The RNA emulator is particularly useful when the simulations with different fidelity level are nonlinearly correlated. The hyperparameters in the model are estimated by maximum likelihood estimation.
This package provides functions for fitting a linear regression model with ARIMA errors using a filtered tau-estimate. The methodology is described in Maronna et al (2017, ISBN:9781119214687).
This package provides functions in this package will import filtered variant call format (VCF) files of SNPs data and generate data sets to detect copy number variants, visualize them and do downstream analyses with copy number variants(e.g. Environmental association analyses).
This package provides functions for connecting to BioUML server, querying BioUML repository and launching BioUML analyses.
Rolling Window Multiple Correlation ('RolWinMulCor') estimates the rolling (running) window correlation for the bi- and multi-variate cases between regular (sampled on identical time points) time series, with especial emphasis to ecological data although this can be applied to other kinds of data sets. RolWinMulCor is based on the concept of rolling, running or sliding window and is useful to evaluate the evolution of correlation through time and time-scales. RolWinMulCor contains six functions. The first two focus on the bi-variate case: (1) rolwincor_1win() and (2) rolwincor_heatmap(), which estimate the correlation coefficients and the their respective p-values for only one window-length (time-scale) and considering all possible window-lengths or a band of window-lengths, respectively. The second two functions: (3) rolwinmulcor_1win() and (4) rolwinmulcor_heatmap() are designed to analyze the multi-variate case, following the bi-variate case to visually display the results, but these two approaches are methodologically different. That is, the multi-variate case estimates the adjusted coefficients of determination instead of the correlation coefficients. The last two functions: (5) plot_1win() and (6) plot_heatmap() are used to represent graphically the outputs of the four aforementioned functions as simple plots or as heat maps. The functions contained in RolWinMulCor are highly flexible since these contains several parameters to control the estimation of correlation and the features of the plot output, e.g. to remove the (linear) trend contained in the time series under analysis, to choose different p-value correction methods (which are used to address the multiple comparison problem) or to personalise the plot outputs. The RolWinMulCor package also provides examples with synthetic and real-life ecological time series to exemplify its use. Methods derived from H. Abdi. (2007) <https://personal.utdallas.edu/~herve/Abdi-MCC2007-pretty.pdf>, R. Telford (2013) <https://quantpalaeo.wordpress.com/2013/01/04/, J. M. Polanco-Martinez (2019) <doi:10.1007/s11071-019-04974-y>, and J. M. Polanco-Martinez (2020) <doi:10.1016/j.ecoinf.2020.101163>.
REDUCE is a portable general-purpose computer algebra system supporting scalar, vector, matrix and tensor algebra, symbolic differential and integral calculus, arbitrary precision numerical calculations and output in LaTeX format. REDUCE is based on Lisp and is available on the two dialects Portable Standard Lisp ('PSL') and Codemist Standard Lisp ('CSL'). The redcas package provides an interface for executing arbitrary REDUCE code interactively from R', returning output as character vectors. R code and REDUCE code can be interspersed. It also provides a specialized function for calling the REDUCE feature for solving systems of equations, returning the output as an R object designed for the purpose. A further specialized function uses REDUCE features to generate LaTeX output and post-processes this for direct use in LaTeX documents, e.g. using Sweave'.
This package provides a range of functions for the design and analysis of disease surveillance activities. These functions were originally developed for animal health surveillance activities but can be equally applied to aquatic animal, wildlife, plant and human health surveillance activities. Utilities are included for sample size calculation and analysis of representative surveys for disease freedom, risk-based studies for disease freedom and for prevalence estimation. This package is based on Cameron A., Conraths F., Frohlich A., Schauer B., Schulz K., Sergeant E., Sonnenburg J., Staubach C. (2015). R package of functions for risk-based surveillance. Deliverable 6.24, WP 6 - Decision making tools for implementing risk-based surveillance, Grant Number no. 310806, RISKSUR (<https://www.fp7-risksur.eu/sites/default/files/documents/Deliverables/RISKSUR_%28310806%29_D6.24.pdf>). Many of the RSurveillance functions are incorporated into the epitools website: Sergeant, ESG, 2019. Epitools epidemiological calculators. Ausvet Pty Ltd. Available at: <http://epitools.ausvet.com.au>.
R interface for china national data <http://data.stats.gov.cn/>, some convenient functions for accessing the national data are provided.
Access the Refuge API, a web-application for locating trans and intersex-friendly restrooms, including unisex and accessible restrooms. Includes data on the location of restrooms, along with directions, comments, user ratings and amenities. Coverage is global, but data is most comprehensive in the United States. See <https://www.refugerestrooms.org/api/docs/> for full API documentation.
Bindings for additional models for use with the parsnip package. Models include prediction rule ensembles (Friedman and Popescu, 2008) <doi:10.1214/07-AOAS148>, C5.0 rules (Quinlan, 1992 ISBN: 1558602380), and Cubist (Kuhn and Johnson, 2013) <doi:10.1007/978-1-4614-6849-3>.
This package provides random number generating functions that are much more context aware than the built-in functions. The functions are also much safer, as they check for incompatible values, and more reproducible.