Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The RJDBC package is an implementation of R's DBI interface using JDBC as a back-end. This allows R to connect to any DBMS that has a JDBC driver.
Implementation of the RESTK algorithm based on Markov's Inequality from Vilardell, Sergi, Serra, Isabel, Mezzetti, Enrico, Abella, Jaume, Cazorla, Francisco J. and Del Castillo, J. (2022). "Using Markov's Inequality with Power-Of-k Function for Probabilistic WCET Estimation". In 34th Euromicro Conference on Real-Time Systems (ECRTS 2022). Leibniz International Proceedings in Informatics (LIPIcs) 231 20:1-20:24. <doi:10.4230/LIPIcs.ECRTS.2022.20>. This work has been supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 772773).
This package provides a set of tools to process and calculate metrics on point clouds derived from terrestrial LiDAR (Light Detection and Ranging; TLS). Its creation is based on key aspects of the TLS application in forestry and ecology. Currently, the main routines are based on filtering, neighboring features of points, voxelization, canopy structure, and the creation of artificial stands. It is written using data.table and C++ language and in most of the functions it is possible to use parallel processing to speed-up the routines.
This header-only library provides modern, portable C++ wrappers for SIMD intrinsics and parallelized, optimized math implementations (SSE, AVX, NEON, AVX512). By placing this library in this package, we offer an efficient distribution system for Xsimd <https://github.com/xtensor-stack/xsimd> for R packages using CRAN.
These tools were created to test map-scale hypotheses about trends in large remotely sensed data sets but any data with spatial and temporal variation can be analyzed. Tests are conducted using the PARTS method for analyzing spatially autocorrelated time series (Ives et al., 2021: <doi:10.1016/j.rse.2021.112678>). The method's unique approach can handle extremely large data sets that other spatiotemporal models cannot, while still appropriately accounting for spatial and temporal autocorrelation. This is done by partitioning the data into smaller chunks, analyzing chunks separately and then combining the separate analyses into a single, correlated test of the map-scale hypotheses.
This package provides a collection of functions to simulate luminescence production in dosimetric materials using Monte Carlo methods. Implemented are models for delocalised transitions (e.g., Chen and McKeever (1997) <doi:10.1142/2781>), localised transitions (e.g., Pagonis et al. (2019) <doi:10.1016/j.jlumin.2018.11.024>) and tunnelling transitions (Jain et al. (2012) <doi:10.1088/0953-8984/24/38/385402> and Pagonis et al. (2019) <doi:10.1016/j.jlumin.2018.11.024>). Supported stimulation methods are thermal luminescence (TL), continuous-wave optically stimulated luminescence (CW-OSL), linearly-modulated optically stimulated luminescence (LM-OSL), linearly-modulated infrared stimulated luminescence (LM-IRSL), and isothermal luminescence (ITL or ISO-TL).
This package provides a comprehensive suite of utilities for univariate continuous probability distributions and reliability models. Includes functions to compute the probability density, cumulative distribution, quantile, reliability, and hazard functions, along with random variate generation. Also offers diagnostic and model assessment tools such as Quantile-Quantile (Q-Q) and Probability-Probability (P-P) plots, the Kolmogorov-Smirnov goodness-of-fit test, and model selection criteria including the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). Currently implements the following distributions: Burr X, Chen, Exponential Extension, Exponentiated Logistic, Exponentiated Weibull, Exponential Power, Flexible Weibull, Generalized Exponential, Gompertz, Generalized Power Weibull, Gumbel, Inverse Generalized Exponential, Linear Failure Rate, Log-Gamma, Logistic-Exponential, Logistic-Rayleigh, Log-log, Marshall-Olkin Extended Exponential, Marshall-Olkin Extended Weibull, and Weibull Extension distributions. Serves as a valuable resource for teaching and research in probability theory, reliability analysis, and applied statistical modeling.
Reports errors and messages to Rollbar, the error tracking platform <https://rollbar.com>.
Recursive algorithms for computing various relatedness coefficients, including pairwise kinship, kappa and identity coefficients. Both autosomal and X-linked coefficients are computed. Founders are allowed to be inbred, which enables construction of any given kappa coefficients, as described in Vigeland (2020) <doi:10.1007/s00285-020-01505-x>. In addition to the standard coefficients, ribd also computes a range of lesser-known coefficients, including generalised kinship coefficients, multi-person coefficients and two-locus coefficients (Vigeland, 2023, <doi:10.1093/g3journal/jkac326>). Many features of ribd are available through the online app QuickPed at <https://magnusdv.shinyapps.io/quickped>; see Vigeland (2022) <doi:10.1186/s12859-022-04759-y>.
Collection of tools for the analysis of the resilience of dynamic networks. Created as a classroom project.
R-level and C++-level functionality to generate random deviates from and calculate moments of a Truncated Normal distribution using the algorithm of Robert (1995) <DOI:10.1007/BF00143942>. In addition to RNG, functions for calculating moments, densities, and entropies are provided at both levels.
This package performs univariate probability mass function estimation via Bayesian nonparametric mixtures of rounded kernels as in Canale and Dunson (2011) <doi:10.1198/jasa.2011.tm10552>.
Use the <https://api.nbp.pl/> API through R. Retrieve currency exchange rates and gold prices data published by the National Bank of Poland in form of convenient R objects.
Integrates population dynamics and dispersal into a mechanistic virtual species simulator. The package can be used to study the effects of environmental change on population growth and range shifts. It allows for simple and straightforward definition of population dynamics (including positive density dependence), extensive possibilities for defining dispersal kernels, and the ability to generate virtual ecologist data. Learn more about the rangr at <https://docs.ropensci.org/rangr/>. This work was supported by the National Science Centre, Poland, grant no. 2018/29/B/NZ8/00066 and the PoznaĆ Supercomputing and Networking Centre (grant no. pl0090-01).
Load multiple movies, series, actors, directors etc from OMDB API. More information in: <http://www.omdbapi.com/> .
This package provides string arithmetic, reassignment operators, logical operators that handle missing values, and extra logical operators such as floating point equality and all or nothing. The intent is to allow R users to write code that is easier to read, write, and maintain while providing a friendlier experience to new R users from other language backgrounds (such as Python') who are used to concepts such as x += 1 and foo + bar'. Includes operators for not in, easy floating point comparisons, === equivalent, and SQL-like like operations (), etc. We also added in some extra helper functions, such as OS checks, pasting in Oxford comma format, and functions to get the first, last, nth, or most common element of a vector or word in a string.
This package provides tools for implementing Retrieval-Augmented Generation (RAG) workflows with Large Language Models (LLM). Includes functions for document processing, text chunking, embedding generation, storage management, and content retrieval. Supports various document types and embedding providers ('Ollama', OpenAI'), with DuckDB as the default storage backend. Integrates with the ellmer package to equip chat objects with retrieval capabilities. Designed to offer both sensible defaults and customization options with transparent access to intermediate outputs. For a review of retrieval-augmented generation methods, see Gao et al. (2023) "Retrieval-Augmented Generation for Large Language Models: A Survey" <doi:10.48550/arXiv.2312.10997>.
Calculates robust Matthews Correlation Coefficient (MCC) and robust F-Beta Scores, as introduced by Holzmann and Klar (2024) <doi:10.48550/arXiv.2404.07661>. These performance metrics are designed for imbalanced classification problems. Plots the receiver operating characteristic curve (ROC curve) together with the recall / 1-precision curve.
The SaTScan'(TM) <https://www.satscan.org> software uses spatial and space-time scan statistics to detect and evaluate spatial and space-time clusters. With the rsatscan package, you can run the external SaTScan software from within R using R data formats. To successfully select appropriate parameter settings within rsatscan', you must first learn SaTScan'.
Read, write and manipulate Praat TextGrid, PitchTier, Pitch, IntensityTier, Formant, Sound, and Collection files <https://www.fon.hum.uva.nl/praat/>.
ViennaCL is a free open-source linear algebra library for computations on many-core architectures (GPUs, MIC) and multi-core CPUs. The library is written in C++ and supports CUDA', OpenCL', and OpenMP (including switches at runtime). I have placed these libraries in this package as a more efficient distribution system for CRAN. The idea is that you can write a package that depends on the ViennaCL library and yet you do not need to distribute a copy of this code with your package.
This package provides a data structure and toolkit for documenting and recoding categorical data that can be shared in other statistical software.
Constrained clustering, transfer functions, and other methods for analysing Quaternary science data.
Non-linear transformations of data to better discover latent effects. Applies a sequence of three transformations (1) a Gaussianizing transformation, (2) a Z-score transformation, and (3) an outlier removal transformation. A publication describing the method has the following citation: Gregory J. Hunt, Mark A. Dane, James E. Korkola, Laura M. Heiser & Johann A. Gagnon-Bartsch (2020) "Automatic Transformation and Integration to Improve Visualization and Discovery of Latent Effects in Imaging Data", Journal of Computational and Graphical Statistics, <doi:10.1080/10618600.2020.1741379>.