Multiple comparison procedures (MCPs) control the familywise error rate in clinical trials. Graphical MCPs include many commonly used procedures as special cases; see Bretz et al. (2011) <doi:10.1002/bimj.201000239>, Lu (2016) <doi:10.1002/sim.6985>, and Xi et al. (2017) <doi:10.1002/bimj.201600233>. This package is a low-dependency implementation of graphical MCPs which allow mixed types of tests. It also includes power simulations and visualization of graphical MCPs.
This package provides functions for determining and evaluating high-risk zones and simulating and thinning point process data, as described in Determining high risk zones using point process methodology - Realization by building an R package Seibold (2012) <http://highriskzone.r-forge.r-project.org/Bachelorarbeit.pdf> and Determining high-risk zones for unexploded World War II bombs by using point process methodology', Mahling et al. (2013) <doi:10.1111/j.1467-9876.2012.01055.x>.
The package clusters gene activity along chromosome into zones, detects differential zones as outstanding, and visualizes maps of outstanding zones across the genome. It enables characterization of effects on multiple genes within adaptive genomic neighborhoods, which could arise from genome reorganization, structural variation, or epigenome alteration. It guarantees cluster optimality, linear runtime to sample size, and reproducibility. One can apply it on genome-wide activity measurements such as copy number, transcriptomic, proteomic, and methylation data.
This package provides a collection of data sets relating to ADHD (Attention Deficit Hyperactivity Disorder) which have been sourced from other packages on CRAN or from publications on other websites such as Kaggle <http://www.kaggle.com/>.The package also includes some simple functions for analysing data sets. The data sets and descriptions of the data sets may differ from what is on CRAN or other source websites. The aim of this package is to bring together data sets from a variety of ADHD research publications. This package would be useful for those interested in finding out what research has been done on the topic of ADHD, or those interested in comparing the results from different existing works. I started this project because I wanted to put together a collection of the data sets relevant to ADHD research, which I have a personal interest in. This work was conducted with the support of my mentor within the Global Talent Mentoring platform. <https://globaltalentmentoring.org/>.
This package implements a new method ClussCluster
descried in Ge Jiang and Jun Li, "Simultaneous Detection of Clusters and Cluster-Specific Genes in High-throughput Transcriptome Data" (Unpublished). Simultaneously perform clustering analysis and signature gene selection on high-dimensional transcriptome data sets. To do so, ClussCluster
incorporates a Lasso-type regularization penalty term to the objective function of K- means so that cell-type-specific signature genes can be identified while clustering the cells.
Bootstrap routines for nested linear mixed effects models fit using either lme4 or nlme'. The provided bootstrap()
function implements the parametric, residual, cases, random effect block (REB), and wild bootstrap procedures. An overview of these procedures can be found in Van der Leeden et al. (2008) <doi: 10.1007/978-0-387-73186-5_11>, Carpenter, Goldstein & Rasbash (2003) <doi: 10.1111/1467-9876.00415>, and Chambers & Chandra (2013) <doi: 10.1080/10618600.2012.681216>.
Interfaces R with LSD simulation models. Reads object-oriented data in results files (.res[.gz]) produced by LSD and creates appropriate multi-dimensional arrays in R. Supports multiple core parallel threads of multi-file data reading for increased performance. Also provides functions to extract basic information and statistics from data files. LSD (Laboratory for Simulation Development) is free software developed by Marco Valente and Marcelo C. Pereira (documentation and downloads available at <https://www.labsimdev.org/>).
Fit and compare nonlinear mixed-effects models in differential equations with flexible dosing information commonly seen in pharmacokinetics and pharmacodynamics (Almquist, Leander, and Jirstrand 2015 <doi:10.1007/s10928-015-9409-1>). Differential equation solving is by compiled C code provided in the rxode2 package (Wang, Hallow, and James 2015 <doi:10.1002/psp4.12052>). This package is for support functions like preconditioned fits <doi:10.1208/s12248-016-9866-5>, boostrap and stepwise covariate selection.
Returns nonparametric aligned rank tests for the interaction in two-way factorial designs, on R data sets with repeated measures in wide format. Five ANOVAs tables are reported. A PARAMETRIC one on the original data, one for a CHECK upon the interaction alignments, and three aligned rank tests: one on the aligned REGULAR, one on the FRIEDMAN, and one on the KOCH ranks. In these rank tests, only the resulting values for the interaction are relevant.
Compiles and displays the available data sets regarding the Italian school system, with a focus on the infrastructural aspects. Input datasets are downloaded from the web, with the aim of updating everything to real time. The functions are divided in four main modules, namely Get', to scrape raw data from the web Util', various utilities needed to process raw data Group', to aggregate data at the municipality or province level Map', to visualize the output datasets.
This package provides a macro package for use with epsf.tex
which allows PostScript labels in an Encapsulated PostScript file to be replaced by TeX labels. The package provides commands \relabel
(simply replace a PostScript string), \adjustrelabel
(replace a PostScript string, with position adjustment), and \extralabel
(add a label at given coordinates). You can, if you so choose, use the facilities of the labelfig
package in place of using \extralabel
.
These dataset contains daily quality air measurements in Spain over a period of 18 years (from 2001 to 2018). The measurements refer to several pollutants. These data are openly published by the Government of Spain. The datasets were originally spread over a number of files and formats. Here, the same information is contained in simple dataframe for convenience of researches, journalists or general public. See the Spanish Government website <http://www.miteco.gob.es/> for more information.
Binding to the C++ implementation of the flexible polyline encoding by HERE <https://github.com/heremaps/flexible-polyline>. The flexible polyline encoding is a lossy compressed representation of a list of coordinate pairs or coordinate triples. The encoding is achieved by: (1) Reducing the decimal digits of each value; (2) encoding only the offset from the previous point; (3) using variable length for each coordinate delta; and (4) using 64 URL-safe characters to display the result.
The Hybrid design is a combination of model-assisted design (e.g., the modified Toxicity Probability Interval design) with dose-toxicity model-based design for phase I dose-finding studies. The hybrid design controls the overdosing toxicity well and leads to a recommended dose closer to the true maximum tolerated dose (MTD) due to its ability to calibrate for an intermediate dose. More details can be found in Liao et al. 2022 <doi:10.1002/ijc.34203>.
This package provides the posterior estimates of the regression coefficients when horseshoe prior is specified. The regression models considered here are logistic model for binary response and log normal accelerated failure time model for right censored survival response. The linear model analysis is also available for completeness. All models provide deviance information criterion and widely applicable information criterion. See <doi:10.1111/rssc.12377> Maity et. al. (2019) <doi:10.1111/biom.13132> Maity et. al. (2020).
This package provides a set of functions to make tracking the hidden movements of the Jack player easier. By tracking every possible path Jack might have traveled from the point of the initial murder including special movement such as through alleyways and via carriages, the police can more accurately narrow the field of their search. Additionally, by tracking all possible hideouts from round to round, rounds 3 and 4 should have a vastly reduced field of search.
Framework for visualising tables of counts, proportions and probabilities. The framework is called product plots, alluding to the computation of area as a product of height and width, and the statistical concept of generating a joint distribution from the product of conditional and marginal distributions. The framework, with extensions, is sufficient to encompass over 20 visualisations previously described in fields of statistical graphics and infovis, including bar charts, mosaic plots, treemaps, equal area plots and fluctuation diagrams.
Example software for the analysis of data from designed experiments, especially agricultural crop experiments. The basics of the analysis of designed experiments are discussed using real examples from agricultural field trials. A range of statistical methods using a range of R statistical packages are exemplified . The experimental data is made available as separate data sets for each example and the R analysis code is made available as example code. The example code can be readily extended, as required.
An implementation of Bayesian survival models with graph-structured selection priors for sparse identification of omics features predictive of survival (Madjar et al., 2021 <doi:10.1186/s12859-021-04483-z>) and its extension to use a fixed graph via a Markov Random Field (MRF) prior for capturing known structure of omics features, e.g. disease-specific pathways from the Kyoto Encyclopedia of Genes and Genomes database (Hermansen et al., 2025 <doi:10.48550/arXiv.2503.13078>
).
Calculate agrometeorological variables for crops including growing degree days (McMaster
, GS & Wilhelm, WW (1997) <doi:10.1016/S0168-1923(97)00027-0>), cumulative rainfall, number of stress days and cumulative or mean radiation and evaporation. Convert dates to day of year and vice versa. Also, download curated and interpolated Australian weather data from the Queensland Government DES longpaddock website <https://www.longpaddock.qld.gov.au/>. This data is freely available under the Creative Commons 4.0 licence.
Easy comparison of two tabular data objects in R. Specifically designed to show differences between two sets of data in a useful way that should make it easier to understand the differences, and if necessary, help you work out how to remedy them. Aims to offer a more useful output than all.equal()
when your two data sets do not match, but isn't intended to replace all.equal()
as a way to test for equality.
The penalized and non-penalized Minorize-Maximization (MM) method for frailty models to fit the clustered data, multi-event data and recurrent data. Least absolute shrinkage and selection operator (LASSO), minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD) penalized functions are implemented. All the methods are computationally efficient. These general methods are proposed based on the following papers, Huang, Xu and Zhou (2022) <doi:10.3390/math10040538>, Huang, Xu and Zhou (2023) <doi:10.1177/09622802221133554>.
Integrates fairness auditing and bias mitigation methods for the mlr3 ecosystem. This includes fairness metrics, reporting tools, visualizations and bias mitigation techniques such as "Reweighing" described in Kamiran, Calders (2012) <doi:10.1007/s10115-011-0463-8> and "Equalized Odds" described in Hardt et al. (2016) <https://papers.nips.cc/paper/2016/file/9d2682367c3935defcb1f9e247a97c0d-Paper.pdf>. Integration with mlr3 allows for auditing of ML models as well as convenient joint tuning of machine learning algorithms and debiasing methods.
We developed EasyCellType
which can automatically examine the input marker lists obtained from existing software such as Seurat over the cell markerdatabases. Two quantification approaches to annotate cell types are provided: Gene set enrichment analysis (GSEA) and a modified versio of Fisher's exact test. The function presents annotation recommendations in graphical outcomes: bar plots for each cluster showing candidate cell types, as well as a dot plot summarizing the top 5 significant annotations for each cluster.