mkmf-lite
is a light version of Ruby's mkmf.rb
designed for use as a library. It does not create packages, builds, or log files of any kind. Instead, it provides mixin methods that you can use in FFI or tests to check for the presence of header files, constants, and so on.
Record your test suite's HTTP interactions and replay them during future test runs for fast, deterministic, accurate tests. This is an older version of VCR that is free software under the Expat license. The project later switched to the Hippocratic license, which is non-free. Do not use it in new free software projects.
Code for a variety of nonlinear conditional independence tests: Kernel conditional independence test (Zhang et al., UAI 2011, <arXiv:1202.3775>
), Residual Prediction test (based on Shah and Buehlmann, <arXiv:1511.03334>
), Invariant environment prediction, Invariant target prediction, Invariant residual distribution test, Invariant conditional quantile prediction (all from Heinze-Deml et al., <arXiv:1706.08576>
).
This package provides data on countries and their main city or agglomeration and the different distance measures and dummy variables indicating whether two countries are contiguous, share a common language or a colonial relationship. The reference article for these datasets is Mayer and Zignago (2011) <http://www.cepii.fr/CEPII/en/publications/wp/abstract.asp?NoDoc=3877>
.
Frequentist assisted by Bayes (FAB) p-values and confidence interval construction. See Hoff (2019) <arXiv:1907.12589>
"Smaller p-values via indirect information", Hoff and Yu (2019) <doi:10.1214/18-EJS1517> "Exact adaptive confidence intervals for linear regression coefficients", and Yu and Hoff (2018) <doi:10.1093/biomet/asy009> "Adaptive multigroup confidence intervals with constant coverage".
Analyze graph/network data using L1 centrality and prestige. Functions for deriving global, local, and group L1 centrality/prestige are provided. Routines for visual inspection of a graph/network are also provided. Details are in Kang and Oh (2024a) <doi:10.48550/arXiv.2404.13233>
and Kang and Oh (2024b) <doi:10.48550/arXiv.2408.12078>
.
Statisticians often want to compare the fit of different models on the same data set. However, this usually involves a lot of manual code to fish items out of summary()
or plain model objects. modelfactory offers the capability to pass multiple models in and get out metrics or coefficients for quick comparison with easy-to-remember syntax.
This package provides utility functions and custom probability distribution for Bayesian analyses of radiocarbon dates within the nimble modelling framework. It includes various population growth models, nimbleFunction
objects, as well as a suite of functions for prior and posterior predictive checks for demographic inference (Crema and Shoda (2021) <doi:10.1371/journal.pone.0251695>) and other analyses.
Visualizes the relationship between allele frequency and effect size in genetic association studies. The input is a data frame containing association results. The output is a plot with the effect size of risk variants in the Y axis, and the allele frequency spectrum in the X axis. Corte et al (2023) <doi:10.1101/2023.04.21.23288923>.
This package provides tools that can be used to calculate, evaluate, plot and use for inference the profiles of *arbitrary* inference functions for arbitrary glm
-like fitted models with linear predictors. More information on the methods that are implemented can be found in Kosmidis (2008) https://www.r-project.org/doc/Rnews/Rnews_2008-2.pdf.
The rencode
module is a data structure serialization library, similar to bencode
from the BitTorrent project. For complex, heterogeneous data structures with many small elements, r-encoding stake up significantly less space than b-encodings. This version of rencode is a complete rewrite in Cython to attempt to increase the performance over the pure Python module.
Application of empirical mode decomposition based artificial neural network model for nonlinear and non stationary univariate time series forecasting. For method details see (i) Choudhury (2019) <https://www.indianjournals.com/ijor.aspx?target=ijor:ijee3&volume=55&issue=1&article=013>; (ii) Das (2020) <https://www.indianjournals.com/ijor.aspx?target=ijor:ijee3&volume=56&issue=2&article=002>.
Reverse engineer a regular expression pattern for the characters contained in an R object. Individual characters can be categorised into digits, letters, punctuation or spaces and encoded into run-lengths. This can be used to summarise the structure of a dataset or identify non-standard entries. Many non-character inputs such as numeric vectors and data frames are supported.
This package provides ensemble samplers for affine-invariant Monte Carlo Markov Chain, which allow a faster convergence for badly scaled estimation problems. Two samplers are proposed: the differential.evolution sampler from ter Braak and Vrugt (2008) <doi:10.1007/s11222-008-9104-9> and the stretch sampler from Goodman and Weare (2010) <doi:10.2140/camcos.2010.5.65>.
Analysis of risk through liability matrices. Contains a Gibbs sampler for network reconstruction, where only row and column sums of the liabilities matrix as well as some other fixed entries are observed, following the methodology of Gandy&Veraart (2016) <doi:10.1287/mnsc.2016.2546>. It also incorporates models that use a power law distribution on the degree distribution.
This package provides functions to implement group sequential procedures that allow for early stopping to declare efficacy using a surrogate marker and the possibility of futility stopping. More details are available in: Parast, L. and Bartroff, J (2024) <doi:10.1093/biomtc/ujae108>. A tutorial for this package can be found at <https://laylaparast.com/home/SurrogateSeq.html>
.
The objective of this package is to efficiently create scatterplots where groups can be distinguished by color and texture. Visualizations in computational biology tend to have many groups making it difficult to distinguish between groups solely on color. Thus, this package is useful for increasing the accessibility of scatterplot visualizations to those with visual impairments such as color blindness.
This package provides Bioconductor-friendly wrappers for RNA velocity calculations in single-cell RNA-seq data. We use the basilisk package to manage Conda environments, and the zellkonverter package to convert data structures between SingleCellExperiment
(R) and AnnData
(Python). The information produced by the velocity methods is stored in the various components of the SingleCellExperiment
class.
This package provides functions to convert a page of plots drawn with the graphics
package into identical output drawn with the grid
package. The result looks like the original graphics
-based plot, but consists of grid
grobs and viewports that can then be manipulated with grid
functions (e.g., edit grobs and revisit viewports).
Generate project files and directories following a pre-made template. You can specify variables to customize file names and content, and flexibly adapt the template to your needs. cookiecutter for R implements a subset of the excellent cookiecutter package for the Python programming language (<https://github.com/cookiecutter/>), and aims to be largely compatible with the original cookiecutter template format.
Uses inverse probability weighting methods to estimate treatment effect under marginal structure model for the cause-specific hazard of competing risk events. Estimates also the cumulative incidence function (i.e. risk) of the potential outcomes, and provides inference on risk difference and risk ratio. Reference: Kalbfleisch & Prentice (2002)<doi:10.1002/9781118032985>; Hernan et al (2001)<doi:10.1198/016214501753168154>.
Description: Application of empirical mode decomposition based support vector regression model for nonlinear and non stationary univariate time series forecasting. For method details see (i) Choudhury (2019) <http://krishi.icar.gov.in/jspui/handle/123456789/44873>; (ii) Das (2020) <http://krishi.icar.gov.in/jspui/handle/123456789/43174>; (iii) Das (2023) <http://krishi.icar.gov.in/jspui/handle/123456789/77772>.
Reads water network simulation data in Epanet text-based .inp and .rpt formats into R. Also reads results from Epanet-msx'. Provides basic summary information and plots. The README file has a quick introduction. See <http://www2.epa.gov/water-research/epanet> for more information on the Epanet software for modeling hydraulic and water quality behavior of water piping systems.
Create forecasts from multiple predictions using ensemble Bayesian model averaging (EBMA). EBMA models can be estimated using an expectation maximization (EM) algorithm or as fully Bayesian models via Gibbs sampling. The methods in this package are Montgomery, Hollenbach, and Ward (2015) <doi:10.1016/j.ijforecast.2014.08.001> and Montgomery, Hollenbach, and Ward (2012) <doi:10.1093/pan/mps002>.