This package provides software to facilitate the design, testing, and operation of computer models. It focuses particularly on tools that make it easy to construct and edit a customized graphical user interface ('GUI'). Although our simplified GUI language depends heavily on the R interface to the Tcl/Tk package, a user does not need to know Tcl/Tk'. Examples illustrate models built with other R packages, including PBSmapping', PBSddesolve', and BRugs'. A complete user's guide PBSmodelling-UG.pdf shows how to use this package effectively.
This package provides a collection of parametric quantile regression models for bounded data. At present, the package provides 13 parametric quantile regression models. It can specify regression structure for any quantile and shape parameters. It also provides several S3 methods to extract information from fitted model, such as residual analysis, prediction, plotting, and model comparison. For more computation efficient the [dpqr]'s, likelihood, score and hessian functions are written in C++. For further details see Mazucheli et. al (2022) <doi:10.1016/j.cmpb.2022.106816>.
Set of tools for evaluating pooled high-throughput screening experiments, typically employing CRISPR/Cas9 or shRNA
expression cassettes. Contains methods for interrogating library and cassette behavior within an experiment, identifying differentially abundant cassettes, aggregating signals to identify candidate targets for empirical validation, hypothesis testing, and comprehensive reporting. Version 2.0 extends these applications to include a variety of tools for contextualizing and integrating signals across many experiments, incorporates extended signal enrichment methodologies via the "sparrow" package, and streamlines many formal requirements to aid in interpretablity.
This package extends the fitdistr
function of the MASS package with several functions to help the fit of a parametric distribution to non-censored or censored data. Censored data may contain left-censored, right-censored and interval-censored values, with several lower and upper bounds. In addition to maximum likelihood estimation (MLE), the package provides moment matching (MME), quantile matching (QME) and maximum goodness-of-fit estimation (MGE) methods (available only for non-censored data). Weighted versions of MLE, MME and QME are available.
Provided data containing an outcome variable, compositional variables and additional covariates (optional); linearly regress the outcome variable on an isometric log ratio (ilr) transformation of the linearly dependent compositional variables. The package provides predictions (with confidence intervals) in the change (delta) in the outcome/response variable based on the multiple linear regression model and evenly spaced reallocations of the compositional values. The compositional data analysis approach implemented is outlined in Dumuid et al. (2017a) <doi:10.1177/0962280217710835> and Dumuid et al. (2017b) <doi:10.1177/0962280217737805>.
The geographic dimension plays a fundamental role in multidimensional systems. To define a geographic dimension in a star schema, we need a table with attributes corresponding to the levels of the dimension. Additionally, we will also need one or more geographic layers to represent the data using this dimension. The goal of this package is to support the definition of geographic dimensions from layers of geographic information related to each other. It makes it easy to define relationships between layers and obtain the necessary data from them.
This package provides a collection of tools for analyzing the field of vision. It provides a framework for development and use of innovative methods for visualization, statistical analysis, and clinical interpretation of visual-field loss and its change over time. It is intended to be a tool for collaborative research. The package is described in Marin-Franch and Swanson (2013) <doi:10.1167/13.4.10> and is part of the Open Perimetry Initiative (OPI) [Turpin, Artes, and McKendrick
(2012) <doi:10.1167/12.11.22>].
Data screening is an important first step of any statistical analysis. dataReporter
auto generates a customizable data report with a thorough summary of the checks and the results that a human can use to identify possible errors. It provides an extendable suite of test for common potential errors in a dataset. See Petersen AH, Ekstrøm CT (2019). "dataMaid
: Your Assistant for Documenting Supervised Data Quality Screening in R." _Journal of Statistical Software_, *90*(6), 1-38 <doi:10.18637/jss.v090.i06> for more information.
This package provides a collection of multivariate nonparametric methods, selected in part to support an MS level course in nonparametric statistical methods. Methods include adjustments for multiple comparisons, implementation of multivariate Mann-Whitney-Wilcoxon testing, inversion of these tests to produce a confidence region, some permutation tests for linear models, and some algorithms for calculating exact probabilities associated with one- and two- stage testing involving Mann-Whitney-Wilcoxon statistics. Supported by grant NSF DMS 1712839. See Kolassa and Seifu (2013) <doi:10.1016/j.acra.2013.03.006>.
This package provides a collection of functions to facilitate analysis of proteomic data from Olink, primarily NPX data that has been exported from Olink Software. The functions also work on QUANT data from Olink by log- transforming the QUANT data. The functions are focused on reading data, facilitating data wrangling and quality control analysis, performing statistical analysis and generating figures to visualize the results of the statistical analysis. The goal of this package is to help users extract biological insights from proteomic data run on the Olink platform.
Definitions of classes, methods, operators and functions for use in photobiology and radiation meteorology and climatology. Calculation of effective (weighted) and not-weighted irradiances/doses, fluence rates, transmittance, reflectance, absorptance, absorbance and diverse ratios and other derived quantities from spectral data. Local maxima and minima: peaks, valleys and spikes. Conversion between energy-and photon-based units. Wavelength interpolation. Astronomical calculations related solar angles and day length. Colours and vision. This package is part of the r4photobiology suite, Aphalo, P. J. (2015) <doi:10.19232/uv4pb.2015.1.14>.
This package provides functions to calculate power and sample size for testing main effect or interaction effect in the survival analysis of epidemiological studies (non-randomized studies), taking into account the correlation between the covariate of the interest and other covariates. Some calculations also take into account the competing risks and stratified analysis. This package also includes a set of functions to calculate power and sample size for testing main effect in the survival analysis of randomized clinical trials and conditional logistic regression for nested case-control study.
This package provides functions for multivariate analysis with compositional data. Includes a function for doing compositional canonical correlation analysis. This analysis requires two data matrices of compositions, which can be adequately transformed and used as entries in a specialized program for canonical correlation analysis, that is able to deal with singular covariance matrices. The methodology is described in Graffelman et al. (2017) <doi:10.1101/144584>. Functions for log-ratio principal component analysis with condition number computations and log-ratio discriminant analysis have been added to the package.
An important aspect of data analytics is related to data management support for artificial intelligence. It is related to preparing data correctly. This package provides extensions to support data preparation in terms of both data sampling and data engineering. Overall, the package provides researchers with a comprehensive set of functionalities for data science based on experiment lines, promoting ease of use, extensibility, and integration with various tools and libraries. Information on Experiment Line is based on Ogasawara et al. (2009) <doi:10.1007/978-3-642-02279-1_20>.
An imprecise inference presented in the study of Walley (1996) <doi:10.1111/j.2517-6161.1996.tb02065.x> is one of the statistical reasoning methods when prior information is unavailable. Functions and utils needed for illustrating this inferential paradigm are implemented for classroom teaching and further comprehensive research. Two imprecise models are demonstrated using multinomial data and 2x2 contingency table data. The concepts of prior ignorance and imprecision are discussed in lower and upper probabilities. Representation invariance principle, hypothesis testing, decision-making, and further generalization are also illustrated.
This package provides an R interface for the PROFOUND database <doi:10.5880/PIK.2019.008>. The PROFOUND database contains a wide range of data to evaluate vegetation models and simulate climate impacts at the forest stand scale. It includes 9 forest sites across Europe, and provides for them a site description as well as soil, climate, CO2, Nitrogen deposition, tree-level, forest stand-level and remote sensing data. Moreover, for a subset of 5 sites, also time series of carbon fluxes, energy balances and soil water are available.
This package provides a toolkit for calculating topographic distances and identifying and plotting topographic paths. Topographic distances can be calculated along shortest topographic paths (Wang (2009) <doi:10.1111/j.1365-294X.2009.04338.x>), weighted topographic paths (Zhan et al. (1993) <doi:10.1007/3-540-57207-4_29>), and topographic least cost paths (Wang and Summers (2010) <doi:10.1111/j.1365-294X.2009.04465.x>). Functions can map topographic paths on colored or hill shade maps and plot topographic cross sections (elevation profiles) for the paths.
PhyloProfile
is a tool for exploring complex phylogenetic profiles. Phylogenetic profiles, presence/absence patterns of genes over a set of species, are commonly used to trace the functional and evolutionary history of genes across species and time. With PhyloProfile
we can enrich regular phylogenetic profiles with further data like sequence/structure similarity, to make phylogenetic profiling more meaningful. Besides the interactive visualisation powered by R-Shiny, the package offers a set of further analysis features to gain insights like the gene age estimation or core gene identification.
This package provides a stacking solution for modeling imbalanced and severely skewed data. It automates the process of building homogeneous or heterogeneous stacked ensemble models by selecting "best" models according to different criteria. In doing so, it strategically searches for and selects diverse, high-performing base-learners to construct ensemble models optimized for skewed data. This package is particularly useful for addressing class imbalance in datasets, ensuring robust and effective model outcomes through advanced ensemble strategies which aim to stabilize the model, reduce its overfitting, and further improve its generalizability.
An interface to the cycle routing/data services provided by CycleStreets
', a not-for-profit social enterprise and advocacy organisation. The application programming interfaces (APIs) provided by CycleStreets
are documented at (<https://www.cyclestreets.net/api/>). The focus of this package is the journey planning API, which aims to emulate the routes taken by a knowledgeable cyclist. An innovative feature of the routing service of its provision of fastest, quietest and balanced profiles. These represent routes taken to minimise time, avoid traffic and compromise between the two, respectively.
This package provides a comprehensive range of facilities to perform umbrella reviews with stratification of the evidence in R. The package accomplishes this aim by building on three core functions that: (i) automatically perform all required calculations in an umbrella review (including but not limited to meta-analyses), (ii) stratify evidence according to various classification criteria, and (iii) generate a visual representation of the results. Note that if you are not familiar with R, the core features of this package are available from a web browser (<https://www.metaumbrella.org/>).
Create an automated regression table that is well-suited for models that are estimated with multiple dependent variables. panelsummary extends modelsummary (Arel-Bundock, V. (2022) <doi:10.18637/jss.v103.i01>) by allowing regression tables to be split into multiple sections with a simple function call. Utilize familiar arguments such as fmt, estimate, statistic, vcov, conf_level, stars, coef_map, coef_omit, coef_rename, gof_map, and gof_omit from modelsummary to clean the table, and additionally, add a row for the mean of the dependent variable without external manipulation.
Estimation of two-state (survival) models and irreversible illness- death models with possibly interval-censored, left-truncated and right-censored data. Proportional intensities regression models can be specified to allow for covariates effects separately for each transition. We use either a parametric approach with Weibull baseline intensities or a semi-parametric approach with M-splines approximation of baseline intensities in order to obtain smooth estimates of the hazard functions. Parameter estimates are obtained by maximum likelihood in the parametric approach and by penalized maximum likelihood in the semi-parametric approach.
Time Series Segmented Residual Trends is a method for the automated detection of land degradation from remotely sensed vegetation and climate datasets. TSS-RESTREND incorporates aspects of two existing degradation detection methods: RESTREND which is used to control for climate variability, and BFAST which is used to look for structural changes in the ecosystem. The full details of the testing and justification of the TSS-RESTREND method (version 0.1.02) are published in Burrell et al., (2017). <doi:10.1016/j.rse.2017.05.018>. The changes to the method introduced in version 0.2.03 focus on the inclusion of temperature as an additional climate variable. This allows for land degradation assessment in temperature limited drylands. A paper that details this work is currently under review. There are also a number of bug fixes and speed improvements. Version 0.3.0 introduces additional attribution for eCO2
, climate change and climate variability the details of which are in press in Burrell et al., (2020). The version under active development and additional example scripts showing how the package can be applied can be found at <https://github.com/ArdenB/TSSRESTREND>
.