Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Non-parametric clustering of joint pattern multi-genetic/epigenetic factors. This package contains functions designed to cluster subjects based on gene features including single nucleotide polymorphisms (SNPs), DNA methylation (CPG), gene expression (GE), and covariate data. The novel concept follows the general K-means (Hartigan and Wong (1979) <doi:10.2307/2346830> framework but uses weighted Euclidean distances across the gene features to cluster subjects. This approach is unique in that it attempts to capture all pairwise interactions in an effort to cluster based on their complex biological interactions.
R on FHIR is an easy to use wrapper around the HL7 FHIR REST API (STU 3 and R4). It provides tools to easily read and search resources on a FHIR server and brings the results into the R environment. R on FHIR is based on the FhirClient of the official HL7 FHIR .NET API', also made by Firely.
Enhances the R Optimization Infrastructure (ROI) package by registering the CPLEX commercial solver. It allows for solving mixed integer quadratically constrained programming (MIQPQC) problems as well as all variants/combinations of LP, QP, QCP, IP.
Presentation-ready results tables for epidemiologists in an automated, reproducible fashion. The user provides the final analytical dataset and specifies the design of the table, with rows and/or columns defined by exposure(s), effect modifier(s), and estimands as desired, allowing to show descriptors and inferential estimates in one table -- bridging the rift between epidemiologists and their data, one table at a time. See Rothman (2017) <doi:10.1007/s10654-017-0314-3>.
Model based simulation of dynamic networks under tie-oriented (Butts, C., 2008, <doi:10.1111/j.1467-9531.2008.00203.x>) and actor-oriented (Stadtfeld, C., & Block, P., 2017, <doi:10.15195/v4.a14>) relational event models. Supports simulation from a variety of relational event model extensions, including temporal variability in effects, heterogeneity through dyadic latent class relational event models (DLC-REM), random effects, blockmodels, and memory decay in relational event models (Lakdawala, R., 2024 <doi:10.48550/arXiv.2403.19329>). The development of this package was supported by a Vidi Grant (452-17-006) awarded by the Netherlands Organization for Scientific Research (NWO) Grant and an ERC Starting Grant (758791).
Estimates and plots as a heat map the rolling window wavelet correlation (RWWC) coefficients statistically significant (within the 95% CI) between two regular (evenly spaced) time series. RolWinWavCor also plots at the same graphic the time series under study. The RolWinWavCor was designed for financial time series, but this software can be used with other kinds of data (e.g., climatic, ecological, geological, etc). The functions contained in RolWinWavCor are highly flexible since these contains some parameters to personalize the time series under analysis and the heat maps of the rolling window wavelet correlation coefficients. Moreover, we have also included a data set (named EU_stock_markets) that contains nine European stock market indices to exemplify the use of the functions contained in RolWinWavCor'. Methods derived from Polanco-Martà nez et al (2018) <doi:10.1016/j.physa.2017.08.065>).
The TRUST4 or MiXCR is used to identify the clonotypes. The goal of rTCRBCRr is to process the results from these clonotyping tools, and analyze the clonotype repertoire metrics based on chain names and IGH isotypes. The manuscript is still under preparation for publication for now. The references describing the methods in this package will be added later.
This package provides several non parametric randomness tests for numeric sequences.
JDemetra+ (<https://github.com/jdemetra/jdemetra-app>) is the seasonal adjustment software officially recommended to the members of the European Statistical System and the European System of Central Banks. Seasonal adjustment models performed with JDemetra+ can be stored into workspaces. JWSACruncher (<https://github.com/jdemetra/jwsacruncher/releases> for v2 and <https://github.com/jdemetra/jdplus-main/releases> for v3) is a console tool that re-estimates all the multi-processing defined in a workspace and to export the result. rjwsacruncher allows to launch easily the JWSACruncher'.
Fits non-linear regression models on dependant data with Generalised Least Square (GLS) based Random Forest (RF-GLS) detailed in Saha, Basu and Datta (2021) <doi:10.1080/01621459.2021.1950003>.
This package provides fast, persistent (side-effect-free) stack, queue and deque (double-ended-queue) data structures. While deques include a superset of functionality provided by queues, in these implementations queues are more efficient in some specialized situations. See the documentation for rstack, rdeque, and rpqueue for details.
This package provides an easy way to report the results of regression analysis, including: 1. Proportional hazards regression from function coxph of package survival'; 2. Conditional logistic regression from function clogit of package survival'; 3. Ordered logistic regression from function polr of package MASS'; 4. Binary logistic regression from function glm of package stats'; 5. Linear regression from function lm of package stats'; 6. Risk regression model for survival analysis with competing risks from function FGR of package riskRegression'; 7. Multilevel model from function lme of package nlme'.
This package provides a test for the well-specification of the linear instrumental variable model. The test is based on trying to predict the residuals of a two-stage least-squares regression using a random forest. Details can be found in Scheidegger, Londschien and Bühlmann (2025) "A residual prediction test for the well-specification of linear instrumental variable models" <doi:10.48550/arXiv.2506.12771>.
This package provides functions for reading mass spectrometry data in mzXML format.
Supports automated Markov chain Monte Carlo for arbitrarily structured correlation matrices. The user supplies data, a correlation matrix in symbolic form, the current state of the chain, a function that computes the log likelihood, and a list of prior distributions. The package's flagship function then carries out a parameter-at-a-time update of all correlation parameters, and returns the new state. The method is presented in Hughes (2023), in preparation.
Real Twig is a method to correct branch overestimation in quantitative structure models. Overestimated cylinders are correctly tapered using measured twig diameters of corresponding tree species. Supported quantitative structure modeling software includes TreeQSM', SimpleForest', Treegraph', and aRchi'. Also included is a novel database of twig diameters and tools for fractal analysis of point clouds.
R interface to access prices and market data with the Bloomberg Data License service from <https://www.bloomberg.com/professional/product/data-license/>. As a prerequisite, a valid Data License from Bloomberg is needed together with the corresponding SFTP credentials and whitelisting of the IP from which accessing the service. This software and its author are in no way affiliated, endorsed, or approved by Bloomberg or any of its affiliates. Bloomberg is a registered trademark.
This package provides R-squared values and standardized regression coefficients for linear models applied to multiply imputed datasets as obtained by mice'. Confidence intervals, zero-order correlations, and alternative adjusted R-squared estimates are also available. The methods are described in Van Ginkel and Karch (2024) <doi:10.1111/bmsp.12344> and in Van Ginkel (2020) <doi:10.1007/s11336-020-09696-4>.
Various tools for handling fuzzy measures, calculating Shapley value and interaction index, Choquet and Sugeno integrals, as well as fitting fuzzy measures to empirical data are provided. Construction of fuzzy measures from empirical data is done by solving a linear programming problem by using lpsolve package, whose source in C adapted to the R environment is included. The description of the basic theory of fuzzy measures is in the manual in the Doc folder in this package. Please refer to the following: [1] <https://personal-sites.deakin.edu.au/~gleb/fmtools.html> [2] G. Beliakov, H. Bustince, T. Calvo, A Practical Guide to Averaging', Springer, (2016, ISBN: 978-3-319-24753-3). [3] G. Beliakov, S. James, J-Z. Wu, Discrete Fuzzy Measures', Springer, (2020, ISBN: 978-3-030-15305-2).
Robust estimators for the beta regression, useful for modeling bounded continuous data. Currently, four types of robust estimators are supported. They depend on a tuning constant which may be fixed or selected by a data-driven algorithm also implemented in the package. Diagnostic tools associated with the fitted model, such as the residuals and goodness-of-fit statistics, are implemented. Robust Wald-type tests are available. More details about robust beta regression are described in Maluf et al. (2025) <doi:10.1007/s00184-024-00949-1>.
This package provides functions for semi-automated quality control of bulk RNA-seq data.
Protocol Buffers are a way of encoding structured data in an efficient yet extensible format. Google uses Protocol Buffers for almost all of its internal RPC protocols and file formats. Additional documentation is available in two included vignettes one of which corresponds to our JSS paper (2016, <doi:10.18637/jss.v071.i02>. A sufficiently recent version of Protocol Buffers library is required; currently version 3.3.0 from 2017 is the stated minimum.
This is an extension of the regression-based causal mediation analysis first proposed by Valeri and VanderWeele (2013) <doi:10.1037/a0031034> and Valeri and VanderWeele (2015) <doi:10.1097/EDE.0000000000000253>). It supports including effect measure modification by covariates(treatment-covariate and mediator-covariate product terms in mediator and outcome regression models) as proposed by Li et al (2023) <doi:10.1097/EDE.0000000000001643>. It also accommodates the original SAS macro and PROC CAUSALMED procedure in SAS when there is no effect measure modification. Linear and logistic models are supported for the mediator model. Linear, logistic, loglinear, Poisson, negative binomial, Cox, and accelerated failure time (exponential and Weibull) models are supported for the outcome model.
R-based access to mass-spectrometry (MS) data. While many packages exist to process MS data, many of these make it difficult to access the underlying mass-to-charge ratio (m/z), intensity, and retention time of the files themselves. This package is designed to format MS data in a tidy fashion and allows the user perform the plotting and analysis.