scBubbletree
is a quantitative method for the visual exploration of scRNA-seq
data, preserving key biological properties such as local and global cell distances and cell density distributions across samples. It effectively resolves overplotting and enables the visualization of diverse cell attributes from multiomic single-cell experiments. Additionally, scBubbletree
is user-friendly and integrates seamlessly with popular scRNA-seq
analysis tools, facilitating comprehensive and intuitive data interpretation.
This package provides a mutation analysis tool that discovers cancer driver genes with frequent mutations in protein signalling sites such as post-translational modifications (phosphorylation, ubiquitination, etc). The Poisson generalized linear regression model identifies genes where cancer mutations in signalling sites are more frequent than expected from the sequence of the entire gene. Integration of mutations with signalling information helps find new driver genes and propose candidate mechanisms to known drivers.
Racket is a general-purpose programming language in the Scheme family, with a large set of libraries and a compiler based on Chez Scheme. Racket is also a platform for language-oriented programming, from small domain-specific languages to complete language implementations.
The ``minimal Racket'' distribution includes just enough of Racket for you to use raco pkg
to install more. Bundled packages, such as the DrRacket IDE, are not included.
This package implements likelihood inference for early epidemic analysis. BETS is short for the four key epidemiological events being modeled: Begin of exposure, End of exposure, time of Transmission, and time of Symptom onset. The package contains a dataset of the trajectory of confirmed cases during the coronavirus disease (COVID-19) early outbreak. More detail of the statistical methods can be found in Zhao et al. (2020) <arXiv:2004.07743>
.
Read, analyze, modify, and write GAMS (General Algebraic Modeling System) data. The main focus of gamstransfer is the highly efficient transfer of data with GAMS <https://www.gams.com/>, while keeping these operations as simple as possible for the user. The transfer of data usually takes place via an intermediate GDX (GAMS Data Exchange) file. Additionally, gamstransfer provides utility functions to get an overview of GAMS data and to check its validity.
This package provides robust estimation for spatial error model to presence of outliers in the residuals. The classical estimation methods can be influenced by the presence of outliers in the data. We proposed a robust estimation approach based on the robustified likelihood equations for spatial error model (Vural Yildirim & Yeliz Mert Kantar (2020): Robust estimation approach for spatial error model, Journal of Statistical Computation and Simulation, <doi:10.1080/00949655.2020.1740223>).
Sentiment Analysis via deep learning and gradient boosting models with a lot of the underlying hassle taken care of to make the process as simple as possible. In addition to out-performing traditional, lexicon-based sentiment analysis (see <https://benwiseman.github.io/sentiment.ai/#Benchmarks>), it also allows the user to create embedding vectors for text which can be used in other analyses. GPU acceleration is supported on Windows and Linux.
Uplift modeling aims at predicting the causal effect of an action such as a marketing campaign on a particular individual. In order to simplify the task for practitioners in uplift modeling, we propose a combination of tools that can be separated into the following ingredients: i) quantization, ii) visualization, iii) variable selection, iv) parameters estimation and, v) model validation. For more details, see <https://dms.umontreal.ca/~murua/research/UpliftRegression.pdf>
.
This started out as a package for file and string manipulation. Since then, the fs
and strex
packages emerged, offering functionality previously given by this package. Those packages have hence almost pushed filesstrings into extinction. However, it still has a small number of unique, handy file manipulation functions which can be seen in the vignette. One example is a function to remove spaces from all file names in a directory.
This package provides a tool that imports, subsets, and exports the CongressData
dataset. CongressData
contains approximately 800 variables concerning all US congressional districts with data back to 1789. The dataset tracks district characteristics, members of Congress, and the political behavior of those members. Users with only a basic understanding of R can subset this data across multiple dimensions, export their search results, identify the citations associated with their searches, and more.
It facilitates the calculation of 40 different insulin sensitivity indices based on fasting, oral glucose tolerance test (OGTT), lipid (adipose), and tracer (palmitate and glycerol rate) and dxa (fat mass) measurement values. It enables easy and accurate assessment of insulin sensitivity, critical for understanding and managing metabolic disorders like diabetes and obesity. Indices calculated are described in Gastaldelli (2022). <doi:10.1002/oby.23503> and Lorenzo (2010). <doi:10.1210/jc.2010-1144>.
The 2017 American College of Cardiology and American Heart Association blood pressure guideline recommends using 10-year predicted atherosclerotic cardiovascular disease risk to guide the decision to initiate or intensify antihypertensive medication. The guideline recommends using the Pooled Cohort risk prediction equations to predict 10-year atherosclerotic cardiovascular disease risk. This package implements the original Pooled Cohort risk prediction equations and also incorporates updated versions based on more contemporary data and statistical methods.
This package provides R functions for calculating basic effect size indices for single-case designs, including several non-overlap measures and parametric effect size measures, and for estimating the gradual effects model developed by Swan and Pustejovsky (2018) <DOI:10.1080/00273171.2018.1466681>. Standard errors and confidence intervals (based on the assumption that the outcome measurements are mutually independent) are provided for the subset of effect sizes indices with known sampling distributions.
This package provides a time series causal inference model for Randomized Controlled Trial (RCT) under spillover effect. SPORTSCausal (Spillover Time Series Causal Inference) separates treatment effect and spillover effect from given responses of experiment group and control group by predicting the response without treatment. It reports both effects by fitting the Bayesian Structural Time Series (BSTS) model based on CausalImpact
', as described in Brodersen et al. (2015) <doi:10.1214/14-AOAS788>.
The package contains BioGRID
interactions for arabidopsis(thale cress), c.elegans, fruit fly, human, mouse, yeast( budding yeast ) and S.pombe (fission yeast) . Entrez ids, official names and unique ids can be used to find proteins. The format of interactions are lists. For each gene/protein, there is an entry in the list with "name" containing name of the gene/protein and "interactors" containing the list of genes/proteins interacting with it.
This package implements an MCMC algorithm to estimate a hierarchical multinomial logit model with a normal heterogeneity distribution. The algorithm uses a hybrid Gibbs Sampler with a random walk metropolis step for the MNL coefficients for each unit. Dependent variable may be discrete or continuous. Independent variables may be discrete or continuous with optional order constraints. Means of the distribution of heterogeneity can optionally be modeled as a linear function of unit characteristics variables.
This package provides extra functions to manipulate dendrograms that build on the base functions provided by the stats package. The main functionality it is designed to add is the ability to colour all the edges in an object of class dendrogram according to cluster membership i.e. each subtree is coloured, not just the terminal leaves. In addition it provides some utility functions to cut dendrogram and hclust objects and to set/get labels.
Easily load and install multiple packages from different sources, including CRAN and GitHub
. The libraries function allows you to load or attach multiple packages in the same function call. The packages function will load one or more packages, and install any packages that are not installed on your system (after prompting you). Also included is a from_import function that allows you to import specific functions from a package into the global environment.
This package provides a function that wraps mcparallel()
and mccollect()
from parallel with temporary variables and a task handler. Wrapped in this way the results of an mcparallel()
call can be returned to the R session when the fork is complete without explicitly issuing a specific mccollect()
to retrieve the value. Outside of top-level tasks, multiple mcparallel()
jobs can be retrieved with a single call to mcparallelDoCheck()
.
Extend the functionality of the mclust package for Gaussian finite mixture modeling by including: density estimation for data with bounded support (Scrucca, 2019 <doi:10.1002/bimj.201800174>); modal clustering using MEM (Modal EM) algorithm for Gaussian mixtures (Scrucca, 2021 <doi:10.1002/sam.11527>); entropy estimation via Gaussian mixture modeling (Robin & Scrucca, 2023 <doi:10.1016/j.csda.2022.107582>); Gaussian mixtures modeling of financial log-returns (Scrucca, 2024 <doi:10.3390/e26110907>).
This package provides methods to calculate and present PHENTHAUproc', an early warning and decision support system for hazard assessment and control of oak processionary moth (OPM) using local and spatial temperature data. It was created by Halbig et al. 2024 (<doi:10.1016/j.foreco.2023.121525>) at FVA (<https://www.fva-bw.de/en/homepage/>) Forest Research Institute Baden-Wuerttemberg, Germany and at BOKU - University of Natural Ressources and Life Sciences, Vienna, Austria.
This package provides tools for power and sample size calculation as well as design diagnostics for longitudinal mixed model settings, with a focus on stepped wedge designs. All calculations are oracle estimates i.e. assume random effect variances to be known (or guessed) in advance. The method is introduced in Hussey and Hughes (2007) <doi:10.1016/j.cct.2006.05.007>, extensions are discussed in Li et al. (2020) <doi:10.1177/0962280220932962>.
This package provides a wrapper to access data from the SeeClickFix
web API for R. SeeClickFix
is a central platform employed by many cities that allows citizens to request their city's services. This package creates several functions to work with all the built-in calls to the SeeClickFix
API. Allows users to download service request data from numerous locations in easy-to-use dataframe format manipulable in standard R functions.
This package provides a color picker that can be used as an input in Shiny apps or Rmarkdown documents. The color picker supports alpha opacity, custom color palettes, and many more options. A plot color helper tool is available as an RStudio Addin, which helps you pick colors to use in your plots. A more generic color picker RStudio Addin is also provided to let you select colors to use in your R code.