This package provides tools for calculating evolvability parameters from estimated G-matrices as defined in Hansen and Houle (2008) <doi:10.1111/j.1420-9101.2008.01573.x> and fits phylogenetic comparative models that link the rate of evolution of a trait to the state of another evolving trait (see Hansen et al. 2021 Systematic Biology <doi:10.1093/sysbio/syab079>). The package was released with Bolstad et al. (2014) <doi:10.1098/rstb.2013.0255>, which contains some examples of use.
The main function, ProtectTable()
, performs table suppression according to a frequency rule with a data set as the only required input. Within this function, protectTable()
, protect_linked_tables()
or runArgusBatchFile()
in package sdcTable
is called. Lists of level-hierarchy (parameter dimList
') and other required input to these functions are created automatically. The suppression method Gauss (default) is implemented independently of sdcTable
'. The function, PTgui()
, starts a graphical user interface based on the shiny package.
Simple plotting function(s) for exploratory data analysis with flexible options allowing for easy plot customisation. The goal is to make it easy for beginners to start exploring a dataset through simple R function calls, as well as provide a similar interface to summary statistics and inference information. Includes functionality to generate interactive HTML-driven graphs. Used by iNZight
', a graphical user interface providing easy exploration and visualisation of data for students of statistics, available in both desktop and online versions.
Facilities to work with vector and raster data in efficient repeatable and systematic work flow. Missing functionality in existing packages is included here to allow extraction from raster data with simple features and Spatial types and to make extraction consistent and straightforward. Extract cell numbers from raster data and return the cells as a data frame rather than as lists of matrices or vectors. The functions here allow spatial data to be used without special handling for the format currently in use.
The aim of TCGAbiolinks is:
facilitate GDC open-access data retrieval;
prepare the data using the appropriate pre-processing strategies;
provide the means to carry out different standard analyses, and;
to easily reproduce earlier research results.
In more detail, the package provides multiple methods for analysis (e.g., differential expression analysis, identifying differentially methylated regions) and methods for visualization (e.g., survival plots, volcano plots, starburst plots) in order to easily develop complete analysis pipelines.
From R 4.5.0, the datasets package includes the penguins and penguins_raw data sets popularised in the palmerpenguins package. basepenguins takes files that use the palmerpenguins package and converts them to work with the versions from datasets ('R >= 4.5.0). It does this by removing calls to library(palmerpenguins) and making the necessary changes to column names. Additionally, it provides helper functions to define new files paths for saving the output and a directory of example files to experiment with.
Multidimensional systems allow complex queries to be carried out in an easy way. The geographical dimension, together with the temporal dimension, plays a fundamental role in multidimensional systems. Through this package, vector geographic data layers can be associated to the attributes of geographic dimensions, so that the results of multidimensional queries can be obtained directly as vector layers. The multidimensional structures on which we can define the queries can be created from a flat table or imported directly using functions from this package.
General (multi-allelic) Hardy-Weinberg equilibrium problem from an objective Bayesian testing standpoint. This aim is achieved through the identification of a class of priors specifically designed for this testing problem. A class of intrinsic priors under the full model is considered. This class is indexed by a tuning quantity, the training sample size, as discussed in Consonni, Moreno and Venturini (2010). These priors are objective, satisfy Savage's continuity condition and have proved to behave extremely well for many statistical testing problems.
Create beautiful and customizable tables to summarize several statistical models side-by-side. Draw coefficient plots, multi-level cross-tabs, dataset summaries, balance tables (a.k.a. "Table 1s"), and correlation matrices. This package supports dozens of statistical models, and it can produce tables in HTML, LaTeX
, Word, Markdown, PDF, PowerPoint
, Excel, RTF, JPG, or PNG. Tables can easily be embedded in Rmarkdown or knitr dynamic documents. Details can be found in Arel-Bundock (2022) <doi:10.18637/jss.v103.i01>.
This package provides a building block for optimization algorithms based on a simplex. The optimsimplex package may be used in the following optimization methods: the simplex method of Spendley et al. (1962) <doi:10.1080/00401706.1962.10490033>, the method of Nelder and Mead (1965) <doi:10.1093/comjnl/7.4.308>, Box's algorithm for constrained optimization (1965) <doi:10.1093/comjnl/8.1.42>, the multi-dimensional search by Torczon (1989) <https://www.cs.wm.edu/~va/research/thesis.pdf>, etc...
Generate an invoice containing a header with invoice number and businesses details. The invoice table contains any of: salary, one-liner costs, grouped costs. Under the table signature and bank account details appear. Pages are numbered when more than one. Source .json and .Rmd files are editable in the app. A .csv file with raw data can be downloaded. This package includes functions for getting exchange rates between currencies based on quantmod (Ryan and Ulrich, 2023 <https://CRAN.R-project.org/package=quantmod>).
Implementation of methodology designed to perform: (i) variable selection, (ii) effect estimation, and (iii) uncertainty quantification, for high-dimensional survival data. Our method uses a spike-and-slab prior with Laplace slab and Dirac spike and approximates the corresponding posterior using variational inference, a popular method in machine learning for scalable conditional inference. Although approximate, the variational posterior provides excellent point estimates and good control of the false discovery rate. For more information see Komodromos et al. (2021) <arXiv:2112.10270>
.
Noise in the time-series data significantly affects the accuracy of the ARIMA model. Wavelet transformation decomposes the time series data into subcomponents to reduce the noise and help to improve the model performance. The wavelet-ARIMA model can achieve higher prediction accuracy than the traditional ARIMA model. This package provides Wavelet-ARIMA model for time series forecasting based on the algorithm by Aminghafari and Poggi (2012) and Paul and Anjoy (2018) <doi:10.1142/S0219691307002002> <doi:10.1007/s00704-017-2271-x>.
The main functionalities of wrappedtools are: adding backticks to variable names; rounding to desired precision with special case for p-values; selecting columns based on pattern and storing their position, name, and backticked name; computing and formatting of descriptive statistics (e.g. mean±SD), comparing groups and creating publication-ready tables with descriptive statistics and p-values; creating specialized plots for correlation matrices. Functions were mainly written for my own daily work or teaching, but may be of use to others as well.
methylscaper is an R package for processing and visualizing data jointly profiling methylation and chromatin accessibility (MAPit, NOMe-seq, scNMT-seq
, nanoNOMe
, etc.). The package supports both single-cell and single-molecule data, and a common interface for jointly visualizing both data types through the generation of ordered representational methylation-state matrices. The Shiny app allows for an interactive seriation process of refinement and re-weighting that optimally orders the cells or DNA molecules to discover methylation patterns and nucleosome positioning.
This package provides a re-implementation of quantile kriging. Quantile kriging was described by Plumlee and Tuo (2014) <doi:10.1080/00401706.2013.860919>. With computational savings when dealing with replication from the recent paper by Binois, Gramacy, and Ludovski (2018) <doi:10.1080/10618600.2018.1458625> it is now possible to apply quantile kriging to a wider class of problems. In addition to fitting the model, other useful tools are provided such as the ability to automatically perform leave-one-out cross validation.
dominoSignal
is a package developed to analyze cell signaling through ligand - receptor - transcription factor networks in scRNAseq
data. It takes as input information transcriptomic data, requiring counts, z-scored counts, and cluster labels, as well as information on transcription factor activation (such as from SCENIC) and a database of ligand and receptor pairings (such as from CellPhoneDB
). This package creates an object storing ligand - receptor - transcription factor linkages by cluster and provides several methods for exploring, summarizing, and visualizing the analysis.
tidyFlowCore
bridges the gap between flow cytometry analysis using the flowCore
Bioconductor package and the tidy data principles advocated by the tidyverse. It provides a suite of dplyr-, ggplot2-, and tidyr-like verbs specifically designed for working with flowFrame
and flowSet
objects as if they were tibbles; however, your data remain flowCore
data structures under this layer of abstraction. tidyFlowCore
enables intuitive and streamlined analysis workflows that can leverage both the Bioconductor and tidyverse ecosystems for cytometry data.
GNU Emacs is an extensible and highly customizable text editor. It is based on an Emacs Lisp interpreter with extensions for text editing. Emacs has been extended in essentially all areas of computing, giving rise to a vast array of packages supporting, e.g., email, IRC and XMPP messaging, spreadsheets, remote server editing, and much more. Emacs includes extensive documentation on all aspects of the system, from basic editing to writing large Lisp programs. It has full Unicode support for nearly all human languages.
Penalized variable selection tools for the Cox proportional hazards model with interval censored and possibly left truncated data. It performs variable selection via penalized nonparametric maximum likelihood estimation with an adaptive lasso penalty. The optimal thresholding parameter can be searched by the package based on the profile Bayesian information criterion (BIC). The asymptotic validity of the methodology is established in Li et al. (2019 <doi:10.1177/0962280219856238>). The unpenalized nonparametric maximum likelihood estimation for interval censored and possibly left truncated data is also available.
An implementation of the quantitative ethnobotany indices in R. The goal is to provide an easy-to-use platform for ethnobotanists to assess the cultural significance of plant species based on informant consensus. The package closely follows the paper by Tardio and Pardo-de-Santayana (2008). Tardio, J., and M. Pardo-de-Santayana, 2008. Cultural Importance Indices: A Comparative Analysis Based on the Useful Wild Plants of Southern Cantabria (Northern Spain) 1. Economic Botany, 62(1), 24-39. <doi:10.1007/s12231-007-9004-5>.
Processing of large-in-memory/large-on disk rasters and spatial vectors using GRASS GIS <https://grass.osgeo.org/>. Most functions in the terra package are recreated. Processing of medium-sized and smaller spatial objects will nearly always be faster using terra or sf', but for large-in-memory/large-on-disk objects, fasterRaster
may be faster. To use most of the functions, you must have the stand-alone version (not the OSGeoW4
installer version) of GRASS GIS 8.0 or higher.
This package produces a publication-ready table that includes all effect estimates necessary for full reporting effect modification and interaction analysis as recommended by Knol and Vanderweele (2012) [<doi:10.1093/ije/dyr218>]. It also estimates confidence interval for the trio of additive interaction measures using the delta method (see Hosmer and Lemeshow (1992), [<doi:10.1097/00001648-199209000-00012>]), variance recovery method (see Zou (2008), [<doi:10.1093/aje/kwn104>]), or percentile bootstrapping (see Assmann et al. (1996), [<doi:10.1097/00001648-199605000-00012>]).
Implementing the Progeny Clustering algorithm, the progenyClust
package assesses the clustering stability and identifies the optimal clustering number for a given data matrix. It uses k-means clustering as a default, provides a tailored hierarchical clustering function, and can be customized to work with other clustering algorithms and different parameter settings. The package includes a main function progenyClust()
, plot and summary methods for progenyClust
object, a function hclust.progenyClust()
for hierarchical clustering, and two example datasets (test and cell) for testing.