Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Computing singular value decomposition with robustness is a challenging task. This package provides an implementation of computing robust SVD using density power divergence (<doi:10.48550/arXiv.2109.10680>). It combines the idea of robustness and efficiency in estimation based on a tuning parameter. It also provides utility functions to simulate various scenarios to compare performances of different algorithms.
Indices for assessing riverscape fragmentation, including the Dendritic Connectivity Index, the Population Connectivity Index, the River Fragmentation Index, the Probability of Connectivity, and the Integral Index of connectivity. For a review, see Jumani et al. (2020) <doi:10.1088/1748-9326/abcb37> and Baldan et al. (2022) <doi:10.1016/j.envsoft.2022.105470> Functions to calculate temporal indices improvement when fragmentation due to barriers is reduced are also included.
An R Commander plug-in for the WorldFlora package. It was mainly developed to show work flows and scripts for first-time users.
Applies a given global-fit method to random partial tanglegrams of a fixed size to identify the associations, terminals, and nodes that maximize phylogenetic (in)congruence. It also includes functions to compute more easily the confidence intervals of classification metrics and plot results, reducing computational time. See Llaberia-Robledillo et al., (2023) <doi:10.1093/sysbio/syad016>.
This package provides a means to style plots through cascading style sheets. This separates the aesthetics from the data crunching in plots and charts.
Solves the individual bioenergetic balance for different aquaculture sea fish (Sea Bream and Sea Bass; Brigolin et al., 2014 <doi:10.3354/aei00093>) and shellfish (Mussel and Clam; Brigolin et al., 2009 <doi:10.1016/j.ecss.2009.01.029>; Solidoro et al., 2000 <doi:10.3354/meps199137>). Allows for spatialized model runs and population simulations.
Fits linear models with endogenous regressor using latent instrumental variable approaches. The methods included in the package are Lewbel's (1997) <doi:10.2307/2171884> higher moments approach as well as Lewbel's (2012) <doi:10.1080/07350015.2012.643126> heteroscedasticity approach, Park and Gupta's (2012) <doi:10.1287/mksc.1120.0718> joint estimation method that uses Gaussian copula and Kim and Frees's (2007) <doi:10.1007/s11336-007-9008-1> multilevel generalized method of moment approach that deals with endogeneity in a multilevel setting. These are statistical techniques to address the endogeneity problem where no external instrumental variables are needed. See the publication related to this package in the Journal of Statistical Software for more details: <doi:10.18637/jss.v107.i03>. Note that with version 2.0.0 sweeping changes were introduced which greatly improve functionality and usability but break backwards compatibility.
This package provides a wrapper for Jagger, a morphological analyzer proposed in Yoshinaga (2023) <arXiv:2305.19045>. Jagger uses patterns derived from morphological dictionaries and training data sets and applies them from the beginning of the input. This simultaneous and deterministic process enables it to effectively perform tokenization, POS tagging, and lemmatization.
This package provides a suite of methods to fit and predict case count data using a compartmental SIRS (Susceptible â Infectious â Recovered â Susceptible) model, based on an assumed specification of the effective reproduction number. The significance of this approach is that it relates epidemic progression to the average number of contacts of infected individuals, which decays as a function of the total susceptible fraction remaining in the population. The main functions are pred.curve(), which computes the epidemic curve for a set of parameters, and estimate.mle(), which finds the best fitting curve to observed data. The easiest way to pass arguments to the functions is via a config file, which contains input settings required for prediction, and the package offers two methods, navigate_to_config() which points the user to the configuration file, and re_predict() for starting the fit-predict process. The main model was published in Razvan G. Romanescu et al. <doi:10.1016/j.epidem.2023.100708>.
Robust mixture discriminant analysis (RMDA), proposed in Bouveyron & Girard, 2009 <doi:10.1016/j.patcog.2009.03.027>, allows to build a robust supervised classifier from learning data with label noise. The idea of the proposed method is to confront an unsupervised modeling of the data with the supervised information carried by the labels of the learning data in order to detect inconsistencies. The method is able afterward to build a robust classifier taking into account the detected inconsistencies into the labels.
This package implements two-sample tests for paired data with missing values (Fong, Huang, Lemos and McElrath 2018, Biostatics, <doi:10.1093/biostatistics/kxx039>) and modified Wilcoxon-Mann-Whitney two sample location test, also known as the Fligner-Policello test.
Estimation, forecasting, simulation, and portfolio construction for regime-switching models with exogenous variables as in Pelletier (2006) <doi:10.1016/j.jeconom.2005.01.013>.
It is a package that provides alternative approach for finding optimum parameters of ridge regression. This package focuses on finding the ridge parameter value k which makes the variance inflation factors closest to 1, while keeping them above 1 as addressed by Michael Kutner, Christopher Nachtsheim, John Neter, William Li (2004, ISBN:978-0073108742). Moreover, the package offers end-to-end functionality to find optimum k value and presents the detailed ridge regression results. Finally it shows three sets of graphs consisting k versus variance inflation factors, regression coefficients and standard errors of them.
Spatial Dispersion Index (SDI) is a generalized measurement index, or rather a family of indices to evaluate spatial dispersion of movements/flows in a network in a problem neutral way as described in: Gencer (2023) <doi:10.1007/s12061-023-09545-8>. This package computes and optionally visualizes this index with minimal hassle.
This package provides a collection of randomization tests, data sets and examples. The current version focuses on five testing problems and their implementation in empirical work. First, it facilitates the empirical researcher to test for particular hypotheses, such as comparisons of means, medians, and variances from k populations using robust permutation tests, which asymptotic validity holds under very weak assumptions, while retaining the exact rejection probability in finite samples when the underlying distributions are identical. Second, the description and implementation of a permutation test for testing the continuity assumption of the baseline covariates in the sharp regression discontinuity design (RDD) as in Canay and Kamat (2018) <https://goo.gl/UZFqt7>. More specifically, it allows the user to select a set of covariates and test the aforementioned hypothesis using a permutation test based on the Cramer-von Misses test statistic. Graphical inspection of the empirical CDF and histograms for the variables of interest is also supported in the package. Third, it provides the practitioner with an effortless implementation of a permutation test based on the martingale decomposition of the empirical process for testing for heterogeneous treatment effects in the presence of an estimated nuisance parameter as in Chung and Olivares (2021) <doi:10.1016/j.jeconom.2020.09.015>. Fourth, this version considers the two-sample goodness-of-fit testing problem under covariate adaptive randomization and implements a permutation test based on a prepivoted Kolmogorov-Smirnov test statistic. Lastly, it implements an asymptotically valid permutation test based on the quantile process for the hypothesis of constant quantile treatment effects in the presence of an estimated nuisance parameter.
An R package for estimating conditional multivariate reference regions. The reference region is non parametrically estimated using a kernel density estimator. Covariates effects on the multivariate response means vector and variance-covariance matrix, thus on the region shape, are estimated by flexible additive predictors. Continuous covariates non linear effects might be estimated using penalized splines smoothers. Confidence intervals for the covariates estimated effects might be derived from bootstrap resampling. Kernel density bandwidth can be estimated with different methods, including a method that optimize the region coverage. Numerical, and graphical, summaries can be obtained by the user in order to evaluate reference region performance with real data. Full mathematical details can be found in <doi:10.1002/sim.9163> and <doi:10.1007/s00477-020-01901-1>.
The IntCal20 radiocarbon calibration curves (Reimer et al. 2020 <doi:10.1017/RDC.2020.68>) are provided as a data package, together with previous IntCal curves (IntCal13, IntCal09, IntCal04, IntCal98), other curves (e.g., NOTCal04 [van der Plicht et al. 2004], Arnold & Libby 1951) and postbomb curves. Also provided are functions to copy the curves into memory, and to read, query and plot the data underlying the IntCal20 curves.
This package implements regression calibration methods for correcting measurement error in regression models using external or internal reliability studies. Methods are described in Carroll, Ruppert, Stefanski, and Crainiceanu (2006) "Measurement Error in Nonlinear Models: A Modern Perspective" <doi:10.1201/9781420010138>.
Routines to interact with the Numerai Machine Learning Tournament API <https://numer.ai>. The functionality includes the ability to automatically download the current tournament data, submit predictions, and to get information for your user.
This package provides a collection of high-level, machine- and OS-independent tools for making reproducible and reusable content in R. The two workhorse functions are Cache() and prepInputs(). Cache() allows for nested caching, is robust to environments and objects with environments (like functions), and deals with some classes of file-backed R objects e.g., from terra and raster packages. Both functions have been developed to be foundational components of data retrieval and processing in continuous workflow situations. In both functions, efforts are made to make the first and subsequent calls of functions have the same result, but faster at subsequent times by way of checksums and digesting. Several features are still under development, including cloud storage of cached objects allowing for sharing between users. Several advanced options are available, see ?reproducibleOptions().
Fits standard and random effects latent class models. The single level random effects model is described in Qu et al <doi:10.2307/2533043> and the two level random effects model in Beath and Heller <doi:10.1177/1471082X0800900302>. Examples are given for their use in diagnostic testing.
Routines that allow the user to run a large number of goodness-of-fit tests. It allows for data to be continuous or discrete. It includes routines to estimate the power of the tests and display them as a power graph. The routine run.studies allows a user to quickly study the power of a new method and how it compares to some of the standard ones.
This package provides convenient tools for visualising ordinal outcome data following the "Grotta Bar" approach pioneered by The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group (1995) <doi:10.1056/NEJM199512143332401>.
This package provides functions to compile and load Rust code from R, similar to how Rcpp or cpp11 allow easy interfacing with C++ code. Also provides helper functions to create R packages that use Rust code. Under the hood, the Rust crate extendr is used to do all the heavy lifting.