Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package produces tables with the level of replication (number of replicates) and the experimental uncoded values of the quantitative factors to be used for rotatable Central Composite Design (CCD) experimentation and a 2-D contour plot of the corresponding variance of the predicted response according to Mead et al. (2012) <doi:10.1017/CBO9781139020879> design_ccd(), and analyzes CCD data with response surface methodology ccd_analysis(). A rotatable CCD provides values of the variance of the predicted response that are concentrically distributed around the average treatment combination used in the experimentation, which with uniform precision (implied by the use of several replicates at the average treatment combination) improves greatly the search and finding of an optimum response. These properties of a rotatable CCD represent undeniable advantages over the classical factorial design, as discussed by Panneton et al. (1999) <doi:10.13031/2013.13267> and Mead et al. (2012) <doi:10.1017/CBO9781139020879.018> among others.
Inverse normal transformation (INT) based genetic association testing. These tests are recommend for continuous traits with non-normally distributed residuals. INT-based tests robustly control the type I error in settings where standard linear regression does not, as when the residual distribution exhibits excess skew or kurtosis. Moreover, INT-based tests outperform standard linear regression in terms of power. These tests may be classified into two types. In direct INT (D-INT), the phenotype is itself transformed. In indirect INT (I-INT), phenotypic residuals are transformed. The omnibus test (O-INT) adaptively combines D-INT and I-INT into a single robust and statistically powerful approach. See McCaw ZR, Lane JM, Saxena R, Redline S, Lin X. "Operating characteristics of the rank-based inverse normal transformation for quantitative trait analysis in genome-wide association studies" <doi:10.1111/biom.13214>.
This package provides a wrapper for the Deutsche Nationalbibliothek (German National Library) API', available at <https://www.dnb.de/EN/Home/home_node.html>. The German National Library is the German central archival library, collecting, archiving, bibliographically classifying all German and German-language publications, foreign publications about Germany, translations of German works, and the works of German-speaking emigrants published abroad between 1933 and 1945.
Calculates risk differences (or prevalence differences for cross-sectional data) using generalized linear models with automatic link function selection. Provides robust model fitting with fallback methods, support for stratification and adjustment variables, inverse probability of treatment weighting (IPTW) for causal inference, and publication-ready output formatting. Handles model convergence issues gracefully and provides confidence intervals using multiple approaches. Methods are based on approaches described in Mark W. Donoghoe and Ian C. Marschner (2018) "logbin: An R Package for Relative Risk Regression Using the Log-Binomial Model" <doi:10.18637/jss.v086.i09> for robust GLM fitting, Peter C. Austin (2011) "An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies" <doi:10.1080/00273171.2011.568786> for IPTW methods, and standard epidemiological methods for risk difference estimation as described in Kenneth J. Rothman, Sander Greenland and Timothy L. Lash (2008, ISBN:9780781755641) "Modern Epidemiology".
Assist in reproducible retrospective (ex-post) harmonization of data, particularly individual level survey data, by providing tools for organizing metadata, standardizing the coding of variables, and variable names and value labels, including missing values, and documenting the data transformations, with the help of comprehensive s3 classes.
Estimates disease prevalence for a given index date using existing registry data extended with Monte Carlo simulations following the method of Crouch et al (2014) <doi: 10.1016/j.canep.2014.02.005>.
Base S4-classes and functions for robust asymptotic statistics.
The minimal rrapply'-package contains a single function rrapply(), providing an extended implementation of R'-base rapply() by allowing to recursively apply a function to elements of a nested list based on a general condition function and including the possibility to prune or aggregate nested list elements from the result. In addition, special arguments can be supplied to access the name, location, parents and siblings in the nested list of the element under evaluation. The rrapply() function builds upon rapply()'s native C implementation and requires no other package dependencies.
Analysis of corneal data obtained from a Placido disk corneal topographer with calculation of irregularity indices. This package performs analyses of corneal data obtained from a Placido disk corneal topographer, with the calculation of the Placido irregularity indices and the posterior analysis. The package is intended to be easy to use by a practitioner, providing a simple interface and yielding easily interpretable results. A corneal topographer is an ophthalmic clinical device that obtains measurements in the cornea (the anterior part of the eye). A Placido disk corneal topographer makes use of the Placido disk [Rowsey et al. (1981)]<doi:10.1001/archopht.1981.03930011093022>, which produce a circular pattern of measurement nodes. The raw information measured by such a topographer is used by practitioners to analyze curvatures, to study optical aberrations, or to diagnose specific conditions of the eye (e.g. keratoconus, an important corneal disease). The rPACI package allows the calculation of the corneal irregularity indices described in [Castro-Luna et al. (2020)]<doi:10.1016%2Fj.clae.2019.12.006>, [Ramos-Lopez et al. (2013)]<doi:10.1097%2FOPX.0b013e3182843f2a>, and [Ramos-Lopez et al. (2011)]<doi:10.1097/opx.0b013e3182279ff8>. It provides a simple interface to read corneal topography data files as exported by a typical Placido disk topographer, to compute the irregularity indices mentioned before, and to display summary plots that are easy to interpret for a clinician.
This package provides a tool for detecting reversions for a given pathogenic mutation from next-generation DNA sequencing data. It analyses reads aligned to the locus of the pathogenic mutation and reports reversion events where secondary mutations have restored or undone the deleterious effect of the original pathogenic mutation, e.g., secondary indels complement to a frameshift pathogenic mutation converting the orignal frameshift mutation into inframe mutaions, deletions or SNVs that replaced the original pathogenic mutation restoring the open reading frame, SNVs changing the stop codon caused by the original nonsense SNV into an amino acid, etc.
Multivariate regression methodologies including classical reduced-rank regression (RRR) studied by Anderson (1951) <doi:10.1214/aoms/1177729580> and Reinsel and Velu (1998) <doi:10.1007/978-1-4757-2853-8>, reduced-rank regression via adaptive nuclear norm penalization proposed by Chen et al. (2013) <doi:10.1093/biomet/ast036> and Mukherjee et al. (2015) <doi:10.1093/biomet/asx080>, robust reduced-rank regression (R4) proposed by She and Chen (2017) <doi:10.1093/biomet/asx032>, generalized/mixed-response reduced-rank regression (mRRR) proposed by Luo et al. (2018) <doi:10.1016/j.jmva.2018.04.011>, row-sparse reduced-rank regression (SRRR) proposed by Chen and Huang (2012) <doi:10.1080/01621459.2012.734178>, reduced-rank regression with a sparse singular value decomposition (RSSVD) proposed by Chen et al. (2012) <doi:10.1111/j.1467-9868.2011.01002.x> and sparse and orthogonal factor regression (SOFAR) proposed by Uematsu et al. (2019) <doi:10.1109/TIT.2019.2909889>.
This is a companion package of the book "R Programming: Zero to Pro" <https://r02pro.github.io/>. It contains the datasets used in the book and provides interactive exercises corresponding to the book. It covers a wide range of topics including visualization, data transformation, tidying data, data input and output.
This package provides a toolkit for analyzing classifier performance by using receiver operating characteristic (ROC) curves. Performance may be assessed on a single classifier or multiple ones simultaneously, making it suitable for comparisons. In addition, different metrics allow the evaluation of local performance when working within restricted ranges of sensitivity and specificity. For details on the different implementations, see McClish D. K. (1989) <doi:10.1177/0272989X8900900307>, Vivo J.-M., Franco M. and Vicari D. (2018) <doi:10.1007/S11634-017-0295-9>, Jiang Y., et al (1996) <doi:10.1148/radiology.201.3.8939225>, Franco M. and Vivo J.-M. (2021) <doi:10.3390/math9212826> and Carrington, André M., et al (2020) <doi: 10.1186/s12911-019-1014-6>.
Fundamental formulas for Radar, for attenuation, range, velocity, effectiveness, power, scatter, doppler, geometry, radar equations, etc. Based on Nick Guy's Python package PyRadarMet.
This package provides functions to compute the modularity and modularity-related roles in networks. It is a wrapper around the rgraph library (Guimera & Amaral, 2005, <doi:10.1038/nature03288>).
Pre-processing and polymer identification of Raman spectra of plastics. Pre-processing includes normalisation functions, peak identification based on local maxima, smoothing process and removal of spectral region of no interest. Polymer identification can be performed using Pearson correlation coefficient or Euclidean distance (Renner et al. (2019), <doi:10.1016/j.trac.2018.12.004>), and the comparison can be done with a user-defined database or with the database already implemented in the package, which currently includes 356 spectra, with several spectra of plastic colorants.
An R interface to estimate structured additive regression (STAR) models with BayesX'.
This package provides Java graphical user interfaces for viewing, manipulating and plotting graphs. Graphs may be directed or undirected.
This package provides functionality to read settings, statuses and readings of weather stations from the ZENTRA Cloud API <https://zentracloud.com/api/v1/guide#APIGuidelines>.
Using a CSV, LaTeX and R to easily build attractive resumes.
This package provides a programmatic interface to FishBase', re-written based on an accompanying RESTful API. Access tables describing over 30,000 species of fish, their biology, ecology, morphology, and more. This package also supports experimental access to SeaLifeBase data, which contains nearly 200,000 species records for all types of aquatic life not covered by FishBase.'.
Allows caching of raw data directly in R code. This allows R scripts and R Notebooks to be shared and re-run on a machine without access to the original data. Cached data is encoded into an ASCII string that can be pasted into R code. When the code is run, the data is automatically loaded from the cached version if the original data file is unavailable. Works best for small datasets (a few hundred observations).
Takes user-provided baseline data from groups of randomised controlled data and assesses whether the observed distribution of baseline p-values, numbers of participants in each group, or categorical variables are consistent with the expected distribution, as an aid to the assessment of integrity concerns in published randomised controlled trials. References (citations in PubMed format in details of each function): Bolland MJ, Avenell A, Gamble GD, Grey A. (2016) <doi:10.1212/WNL.0000000000003387>. Bolland MJ, Gamble GD, Avenell A, Grey A, Lumley T. (2019) <doi:10.1016/j.jclinepi.2019.05.006>. Bolland MJ, Gamble GD, Avenell A, Grey A. (2019) <doi:10.1016/j.jclinepi.2019.03.001>. Bolland MJ, Gamble GD, Grey A, Avenell A. (2020) <doi:10.1111/anae.15165>. Bolland MJ, Gamble GD, Avenell A, Cooper DJ, Grey A. (2021) <doi:10.1016/j.jclinepi.2020.11.012>. Bolland MJ, Gamble GD, Avenell A, Grey A. (2021) <doi:10.1016/j.jclinepi.2021.05.002>. Bolland MJ, Gamble GD, Avenell A, Cooper DJ, Grey A. (2023) <doi:10.1016/j.jclinepi.2022.12.018>. Carlisle JB, Loadsman JA. (2017) <doi:10.1111/anae.13650>. Carlisle JB. (2017) <doi:10.1111/anae.13938>.
Determination of rainfall-runoff erosivity factor.