Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Read and write las and laz binary file formats. The LAS file format is a public file format for the interchange of 3-dimensional point cloud data between data users. The LAS specifications are approved by the American Society for Photogrammetry and Remote Sensing <https://community.asprs.org/leadership-restricted/leadership-content/public-documents/standards>. The LAZ file format is an open and lossless compression scheme for binary LAS format versions 1.0 to 1.4 <https://laszip.org/>.
Download the latest data from the Australian Prudential Regulation Authority <https://www.apra.gov.au/> and import it into R as a tidy data frame.
This package provides fast, persistent (side-effect-free) stack, queue and deque (double-ended-queue) data structures. While deques include a superset of functionality provided by queues, in these implementations queues are more efficient in some specialized situations. See the documentation for rstack, rdeque, and rpqueue for details.
Collection of models and analysis methods used in regional and urban economics and (quantitative) economic geography, e.g. measures of inequality, regional disparities and convergence, regional specialization as well as accessibility and spatial interaction models.
This package provides the log-likelihoods with gradients from stan (Carpenter et al (2015), <doi:10.48550/arXiv.1509.07164>) needed for generalized log-likelihood estimation in nlmixr2 (Fidler et al (2019) <doi:10.1002/psp4.12445>). This is split of to reduce computational burden of recompiling rxode2 (Wang, Hallow and James (2016) <doi:10.1002/psp4.12052>) which runs the nlmixr2 models during estimation.
R Commander plug-in to demonstrate various actuarial and financial risks. It includes valuation of bonds and stocks, portfolio optimization, classical ruin theory, demography and epidemic.
This package provides an R interface to the Data Retriever <https://retriever.readthedocs.io/en/latest/> via the Data Retriever's command line interface. The Data Retriever automates the tasks of finding, downloading, and cleaning public datasets, and then stores them in a local database.
Efficient CRUD interface for the Airtable API <https://airtable.com/developers/web/api>, supporting batch requests and parallel encoding of large data sets.
Risk ratios and risk differences are estimated using regression models that allow for binary, categorical, and continuous exposures and confounders. Implemented are marginal standardization after fitting logistic models (g-computation) with delta-method and bootstrap standard errors, Miettinen's case-duplication approach (Schouten et al. 1993, <doi:10.1002/sim.4780121808>), log-binomial (Poisson) models with empirical variance (Zou 2004, <doi:10.1093/aje/kwh090>), binomial models with starting values from Poisson models (Spiegelman and Hertzmark 2005, <doi:10.1093/aje/kwi188>), and others.
This package provides helper functions for authenticating and retrieving data from your ODK-X Sync Endpoint'. This is an early release intended for testing and feedback.
Retrieve, map and summarize data from the VertNet.org archives (<https://vertnet.org/>). Functions allow searching by many parameters, including taxonomic names, places, and dates. In addition, there is an interface for conducting spatially delimited searches, and another for requesting large datasets via email.
Calculates the Iberian Actuarial Climate Index and its componentsâ including temperature, precipitation, wind power, and sea level dataâ to support climate change analysis and risk assessment. See "Zhou et al." (2023) <doi:10.26360/2023_3> for further details.
Client for the web service methods provided by DataCite (<https://www.datacite.org/>), including functions to interface with their RESTful search API. The API is backed by Elasticsearch', allowing expressive queries, including faceting.
Symbolic Data Analysis (SDA) was proposed by professor Edwin Diday in 1987, the main purpose of SDA is to substitute the set of rows (cases) in the data table for a concept (second order statistical unit). This package implements, to the symbolic case, certain techniques of automatic classification, as well as some linear models.
This package provides a robust backfitting algorithm for additive models based on (robust) local polynomial kernel smoothers. It includes both bounded and re-descending (kernel) M-estimators, and it computes predictions for points outside the training set if desired. See Boente, Martinez and Salibian-Barrera (2017) <doi:10.1080/10485252.2017.1369077> and Martinez and Salibian-Barrera (2021) <doi:10.21105/joss.02992> for details.
This package provides an R interface to the NiftyReg image registration tools <https://github.com/KCL-BMEIS/niftyreg>. Linear and nonlinear registration are supported, in two and three dimensions.
Provide estimation and data generation tools for the quantile generalized beta regression model. For details, see Bourguignon, Gallardo and Saulo <arXiv:2110.04428> The package also provides tools to perform covariates selection.
This package provides functions for generating k-record values and k-record times.
This package provides a very lightweight package that writes out log messages in an opinionated way. Simpler and lighter than other logging packages, rlog provides a compact feature set that focuses on getting the job done in a Unix-like way.
This package implements the rquery piped Codd-style query algebra using data.table'. This allows for a high-speed in memory implementation of Codd-style data manipulation tools.
Simulation of several fractional and multifractional processes. Includes Brownian and fractional Brownian motions, bridges and Gaussian Haar-based multifractional processes (GHBMP). Implements the methods from Ayache, Olenko and Samarakoon (2025) <doi:10.48550/arXiv.2503.07286> for simulation of GHBMP. Estimation of Hurst functions and local fractal dimension. Clustering realisations based on the Hurst functions. Several functions to estimate and plot geometric statistics of the processes and time series. Provides a shiny application for interactive use of the functions from the package.
Calculates robust Matthews Correlation Coefficient (MCC) and robust F-Beta Scores, as introduced by Holzmann and Klar (2024) <doi:10.48550/arXiv.2404.07661>. These performance metrics are designed for imbalanced classification problems. Plots the receiver operating characteristic curve (ROC curve) together with the recall / 1-precision curve.
Autoencoding Random Forests ('RFAE') provide a method to autoencode mixed-type tabular data using Random Forests ('RF'), which involves projecting the data to a latent feature space of user-chosen dimensionality (usually a lower dimension), and then decoding the latent representations back into the input space. The encoding stage is useful for feature engineering and data visualisation tasks, akin to how principal component analysis ('PCA') is used, and the decoding stage is useful for compression and denoising tasks. At its core, RFAE is a post-processing pipeline on a trained random forest model. This means that it can accept any trained RF of ranger object type: RF', URF or ARF'. Because of this, it inherits Random Forests robust performance and capacity to seamlessly handle mixed-type tabular data. For more details, see Vu et al. (2025) <doi:10.48550/arXiv.2505.21441>.
This package provides tools for the analysis of reverse-phase protein arrays (RPPAs), which are also known as tissue lysate arrays or simply lysate arrays'. The package's primary purpose is to input a set of quantification files representing dilution series of samples and control points taken from scanned RPPA slides and determine a relative log concentration value for each valid dilution series present in each slide and provide graphical visualization of the input and output data and their relationships. Other optional features include generation of quality control scores for judging the quality of the input data, spatial adjustment of sample points based on controls added to the slides, and various types of normalization of calculated values across a set of slides. The package was derived from a previous package named SuperCurve. For a detailed description of data inputs and outputs, usage information, and a list of related papers describing methods used in the package please review the vignette Guide_to_RPPASPACE'. RPPA SPACE: an R package for normalization and quantitation of Reverse-Phase Protein Array data'. Bioinformatics Nov 15;38(22):5131-5133. <doi: 10.1093/bioinformatics/btac665>.