Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An Eigen'-based computationally efficient C++ implementation for fitting various kriging models to data. This research is supported by U.S. National Science Foundation grant DMS-2310637.
This package provides a series of functions that allow users to access the LinkedIn API to get information about connections, search for people and jobs, share updates with their network, and create group discussions. For more information about using the API please visit <https://developer.linkedin.com/>.
This package provides a machine learning package for automatic text classification that makes it simple for novice users to get started with machine learning, while allowing experienced users to easily experiment with different settings and algorithm combinations. The package includes eight algorithms for ensemble classification (svm, slda, boosting, bagging, random forests, glmnet, decision trees, neural networks), comprehensive analytics, and thorough documentation.
Exports an Rcpp interface for the Bessel functions in the Bessel package, which can then be called from the C++ code of other packages. For the original Fortran implementation of these functions see Amos (1995) <doi:10.1145/212066.212078>.
This package provides tools for working with Type S (Sign) and Type M (Magnitude) errors, as proposed in Gelman and Tuerlinckx (2000) <doi:10.1007/s001800000040> and Gelman & Carlin (2014) <doi:10.1177/1745691614551642>. In addition to simply calculating the probability of Type S/M error, the package includes functions for calculating these errors across a variety of effect sizes for comparison, and recommended sample size given "tolerances" for Type S/M errors. To improve the speed of these calculations, closed forms solutions for the probability of a Type S/M error from Lu, Qiu, and Deng (2018) <doi:10.1111/bmsp.12132> are implemented. As of 1.0.0, this includes support only for simple research designs. See the package vignette for a fuller exposition on how Type S/M errors arise in research, and how to analyze them using the type of design analysis proposed in the above papers.
PaleoClim <http://www.paleoclim.org> (Brown et al. 2019, <doi:10.1038/sdata.2018.254>) is a set of free, high resolution paleoclimate surfaces covering the whole globe. It includes data on surface temperature, precipitation and the standard bioclimatic variables commonly used in ecological modelling, derived from the HadCM3 general circulation model and downscaled to a spatial resolution of up to 2.5 minutes. Simulations are available for key time periods from the Late Holocene to mid-Pliocene. Data on current and Last Glacial Maximum climate is derived from CHELSA (Karger et al. 2017, <doi:10.1038/sdata.2017.122>) and reprocessed by PaleoClim to match their format; it is available at up to 30 seconds resolution. This package provides a simple interface for downloading PaleoClim data in R, with support for caching and filtering retrieved data by period, resolution, and geographic extent.
The regression-based (RB) approach is a method to test the missing data mechanism. This package contains two functions that test the type of missing data (Missing Completely At Random vs Missing At Random) on the basis of the RB approach. The first function applies the RB approach independently on each variable with missing data, using the completely observed variables only. The second function tests the missing data mechanism globally (on all variables with missing data) with the use of all available information. The algorithm is adapted both to continuous and categorical data.
The Radiant Basics menu includes interfaces for probability calculation, central limit theorem simulation, comparing means and proportions, goodness-of-fit testing, cross-tabs, and correlation. The application extends the functionality in radiant.data'.
Computes a novel variable importance for random forests: Impurity reduction importance scores for out-of-bag (OOB) data complementing the existing inbag Gini importance, see also <doi: 10.1080/03610926.2020.1764042>. The Gini impurities for inbag and OOB data are combined in three different ways, after which the information gain is computed at each split. This gain is aggregated for each split variable in a tree and averaged across trees.
Combined with RRphylo', this package provides a powerful tool to analyse and visualise 3d models (surfaces and meshes) in a phylogenetically explicit context (Melchionna et al., 2024 <doi:10.1038/s42003-024-06710-8>).
Design and analysis of confirmatory adaptive clinical trials with continuous, binary, and survival endpoints according to the methods described in the monograph by Wassmer and Brannath (2016) <doi:10.1007/978-3-319-32562-0>. This includes classical group sequential as well as multi-stage adaptive hypotheses tests that are based on the combination testing principle.
The Radiant Multivariate menu includes interfaces for perceptual mapping, factor analysis, cluster analysis, and conjoint analysis. The application extends the functionality in radiant.data'.
By placing on a circle 10 points numbered from 1 to 10, and connecting them by a straight line to the point corresponding to its multiplication by 2. (1 must be connected to 1 * 2 = 2, point 2 must be set to 2 * 2 = 4, point 3 to 3 * 2 = 6 and so on). You will obtain an amazing geometric figure that complicates and beautifies itself by varying the number of points and the multiplication table you use.
This package provides a Bayesian-weighted estimator and two unweighted estimators are developed to estimate the number of newly found rare species in additional ecological samples. Among these methods, the Bayesian-weighted estimator and an unweighted (Chao-derived) estimator are of high accuracy and recommended for practical applications. Technical details of the proposed estimators have been well described in the following paper: Shen TJ, Chen YH (2018) A Bayesian weighted approach to predicting the number of newly discovered rare species. Conservation Biology, In press.
This package provides functions and datasets to support Summary and Analysis of Extension Program Evaluation in R, and An R Companion for the Handbook of Biological Statistics. Vignettes are available at <https://rcompanion.org>.
This package provides a comprehensive collection of practical and easy-to-use tools for regression analysis of recurrent events, with or without the presence of a (possibly) informative terminal event described in Chiou et al. (2023) <doi:10.18637/jss.v105.i05>. The modeling framework is based on a joint frailty scale-change model, that includes models described in Wang et al. (2001) <doi:10.1198/016214501753209031>, Huang and Wang (2004) <doi:10.1198/016214504000001033>, Xu et al. (2017) <doi:10.1080/01621459.2016.1173557>, and Xu et al. (2019) <doi:10.5705/SS.202018.0224> as special cases. The implemented estimating procedure does not require any parametric assumption on the frailty distribution. The package also allows the users to specify different model forms for both the recurrent event process and the terminal event.
This package provides methods for fast computation of running sample statistics for time series. These include: (1) mean, (2) standard deviation, and (3) variance over a fixed-length window of time-series, (4) correlation, (5) covariance, and (6) Euclidean distance (L2 norm) between short-time pattern and time-series. Implemented methods utilize Convolution Theorem to compute convolutions via Fast Fourier Transform (FFT).
Univariate and multivariate methods to analyze randomized response (RR) survey designs (e.g., Warner, S. L. (1965). Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association, 60, 63â 69, <doi:10.2307/2283137>). Besides univariate estimates of true proportions, RR variables can be used for correlations, as dependent variable in a logistic regression (with or without random effects), or as predictors in a linear regression (Heck, D. W., & Moshagen, M. (2018). RRreg: An R package for correlation and regression analyses of randomized response data. Journal of Statistical Software, 85(2), 1â 29, <doi:10.18637/jss.v085.i02>). For simulations and the estimation of statistical power, RR data can be generated according to several models. The implemented methods also allow to test the link between continuous covariates and dishonesty in cheating paradigms such as the coin-toss or dice-roll task (Moshagen, M., & Hilbig, B. E. (2017). The statistical analysis of cheating paradigms. Behavior Research Methods, 49, 724â 732, <doi:10.3758/s13428-016-0729-x>).
The RDieHarder package provides an R interface to the DieHarder suite of random number generators and tests that was developed by Robert G. Brown and David Bauer, extending earlier work by George Marsaglia and others. The DieHarder library code is included.
This package provides a complete interface to LibBi', a library for Bayesian inference (see <https://libbi.org> and Murray, 2015 <doi:10.18637/jss.v067.i10> for more information). This includes functions for manipulating LibBi models, for reading and writing LibBi input/output files, for converting LibBi output to provide traces for use with the coda package, and for running LibBi to conduct inference.
Import SGF (Smart Game File) into R.
Administrative regions and other spatial objects of the Czech Republic.
The A() function calculates the A statistic, a nonparametric measure of effect size for two independent groups thatâ s also known as the probability of superiority (Ruscio, 2008), along with its standard error and a confidence interval constructed using bootstrap methods (Ruscio & Mullen, 2012). Optional arguments can be specified to calculate variants of the A statistic developed for other research designs (e.g., related samples, more than two independent groups or related samples; Ruscio & Gera, 2013). <DOI: 10.1037/1082-989X.13.1.19>. <DOI: 10.1080/00273171.2012.658329>. <DOI: 10.1080/00273171.2012.738184>.
This package provides a comprehensive suite of statistical tools for Quality Management, designed around the Define, Measure, Analyze, Improve, and Control (DMAIC) cycle used in Six Sigma methodology. Based on the discontinued CRAN package qualitytools', this package refactors its original design by incorporating R6 object-oriented programming for increased flexibility and performance. It replaces traditional graphics with modern, interactive visualizations using ggplot2 and plotly'. Built on tidyverse principles, it simplifies data manipulation and visualization, offering an intuitive approach to quality science.