Random Forest-like tree ensemble that works with groups of predictor variables. When building a tree, a number of variables is taken randomly from each group separately, thus ensuring that it considers variables from each group for the splits. Useful when rows contain information about different things (e.g. user information and product information) and it's not sensible to make a prediction with information from only one group of variables, or when there are far more variables from one group than the other and it's desired to have groups appear evenly on trees. Trees are grown using the C5.0 algorithm rather than the usual CART algorithm. Supports parallelization (multithreaded), missing values in predictors, and categorical variables (without doing One-Hot encoding in the processing). Can also be used to create a regular (non-stratified) Random Forest-like model, but made up of C5.0 trees and with some additional control options. As it's built with C5.0 trees, it works only for classification (not for regression).
MHC (major histocompatibility complex) molecules are cell surface complexes that present antigens to T cells. The repertoire of antigens presented in a given genetic background largely depends on the sequence of the encoded MHC molecules, and thus, in humans, on the highly variable HLA (human leukocyte antigen) genes of the hyperpolymorphic HLA locus. More than 28,000 different HLA alleles have been reported, with significant differences in allele frequencies between human populations worldwide. Reproducible and consistent annotation of HLA alleles in large-scale bioinformatics workflows remains challenging, because the available reference databases and software tools often use different HLA naming schemes. The package immunotation provides tools for consistent annotation of HLA genes in typical immunoinformatics workflows such as for example the prediction of MHC-presented peptides in different human donors. Converter functions that provide mappings between different HLA naming schemes are based on the MHC restriction ontology (MRO). The package also provides automated access to HLA alleles frequencies in worldwide human reference populations stored in the Allele Frequency Net Database.
Fits a functional mediation model with a scalar distal outcome. The method is described in detail by Coffman, Dziak, Litson, Chakraborti, Piper & Li (2021) <arXiv:2112.03960>
. The model is similar to that of Lindquist (2012) <doi:10.1080/01621459.2012.695640> although allowing a binary outcome as an alternative to a numerical outcome. The current version is a minor bug fix in the vignette. The development of this package was part of a research project supported by National Institutes of Health grants P50 DA039838 from the National Institute of Drug Abuse and 1R01 CA229542-01 from the National Cancer Institute and the NIH Office of Behavioral and Social Science Research. Content is solely the responsibility of the authors and does not necessarily represent the official views of the funding institutions mentioned above. This software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
This package provides an expectation-maximization (EM) algorithm using the approach introduced in Warasi (2023) <doi:10.1080/03610918.2021.2009867>. The EM algorithm can be used to estimate the prevalence (overall proportion) of a disease and to estimate a binary regression model from among the class of generalized linear models based on group testing data. The estimation framework we consider offers a flexible and general approach; i.e., its application is not limited to any specific group testing protocol. Consequently, the EM algorithm can model data arising from simple pooling as well as advanced pooling such as hierarchical testing, array testing, and quality control pooling. Also, provided are functions that can be used to conduct the Wald tests described in Buse (1982) <doi:10.1080/00031305.1982.10482817> and to simulate the group testing data described in Kim et al. (2007) <doi:10.1111/j.1541-0420.2007.00817.x>. We offer a function to compute relative efficiency measures, which can be used to optimize the maximum likelihood estimator of disease prevalence.
The Single Cell Toolkit (SCTK) in the singleCellTK
package provides an interface to popular tools for importing, quality control, analysis, and visualization of single cell RNA-seq data. SCTK allows users to seamlessly integrate tools from various packages at different stages of the analysis workflow. A general "a la carte" workflow gives users the ability access to multiple methods for data importing, calculation of general QC metrics, doublet detection, ambient RNA estimation and removal, filtering, normalization, batch correction or integration, dimensionality reduction, 2-D embedding, clustering, marker detection, differential expression, cell type labeling, pathway analysis, and data exporting. Curated workflows can be used to run Seurat and Celda. Streamlined quality control can be performed on the command line using the SCTK-QC pipeline. Users can analyze their data using commands in the R console or by using an interactive Shiny Graphical User Interface (GUI). Specific analyses or entire workflows can be summarized and shared with comprehensive HTML reports generated by Rmarkdown. Additional documentation and vignettes can be found at camplab.net/sctk.
Computes the Conover-Iman test (1979) for 0th-order stochastic dominance and reports the results among multiple pairwise comparisons after a Kruskal-Wallis omnibus test for i0th-order stochastic dominance among k groups (Kruskal and Wallis, 1952). conover.test makes k(k-1)/2 multiple pairwise comparisons based on Conover-Iman t-test-statistic of the rank differences. The null hypothesis for each pairwise comparison is that the probability of observing a randomly selected value from the first group that is larger than a randomly selected value from the second group equals one half; this null hypothesis corresponds to that of the Wilcoxon-Mann-Whitney rank-sum test. Like the rank-sum test, if the data can be assumed to be continuous, and the distributions are assumed identical except for a difference in location, Conover-Iman test may be understood as a test for median difference and for mean difference. conover.test accounts for tied ranks. The Conover-Iman test is strictly valid if and only if the corresponding Kruskal-Wallis null hypothesis is rejected.
Implementation of two tools to merge Hardware Event Monitors (HEMs) from different subexperiments. Hardware Reading and Merging (HRM), which uses order statistics to merge; and MUlti-Correlation HEM (MUCH) which merges using a multivariate normal distribution. The reference paper for HRM is: S. Vilardell, I. Serra, R. Santalla, E. Mezzetti, J. Abella and F. J. Cazorla, "HRM: Merging Hardware Event Monitors for Improved Timing Analysis of Complex MPSoCs
," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 11, pp. 3662-3673, Nov. 2020, <doi:10.1109/TCAD.2020.3013051>. For MUCH: S. Vilardell, I. Serra, E. Mezzetti, J. Abella, and F. J. Cazorla. 2021. "MUCH: exploiting pairwise hardware event monitor correlations for improved timing analysis of complex MPSoCs
". In Proceedings of the 36th Annual ACM Symposium on Applied Computing (SAC 21). Association for Computing Machinery. <doi:10.1145/3412841.3441931>. This work has been supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 772773).
This package provides functions tailored for scientific and student communities involved in plant science research. Functionalities encompass estimation chlorophyll content according to Arnon (1949) <doi:10.1104/pp.24.1.1>, determination water potential of Polyethylene glycol(PEG)6000 as in Michel and Kaufmann (1973) <doi:10.1104/pp.51.5.914> and functions related to estimation of yield related indices like Abiotic tolerance index as given by Moosavi et al.(2008)<doi:10.22059/JDESERT.2008.27115>, Geometric mean productivity (GMP) by Fernandez (1992) <ISBN:92-9058-081-X>, Golden Mean by Moradi et al.(2012)<doi:10.14207/ejsd.2012.v1n3p543>, HAM by Schneider et al.(1997)<doi:10.2135/cropsci1997.0011183X003700010007x>,MPI and TOL by Hossain etal., (1990)<doi:10.2135/cropsci1990.0011183X003000030030x>, RDI by Fischer et al. (1979)<doi:10.1071/AR9791001>,SSI by Fisher et al.(1978)<doi:10.1071/AR9780897>, STI by Fernandez (1993)<doi:10.22001/wvc.72511>,YSI by Bouslama & Schapaugh (1984)<doi:10.2135/cropsci1984.0011183X002400050026x>, Yield index by Gavuzzi et al.(1997)<doi:10.4141/P96-130>.
An implementation of the Bayesian version of the Mallows rank model (Vitelli et al., Journal of Machine Learning Research, 2018 <https://jmlr.org/papers/v18/15-481.html>; Crispino et al., Annals of Applied Statistics, 2019 <doi:10.1214/18-AOAS1203>; Sorensen et al., R Journal, 2020 <doi:10.32614/RJ-2020-026>; Stein, PhD
Thesis, 2023 <https://eprints.lancs.ac.uk/id/eprint/195759>). Both Metropolis-Hastings and sequential Monte Carlo algorithms for estimating the models are available. Cayley, footrule, Hamming, Kendall, Spearman, and Ulam distances are supported in the models. The rank data to be analyzed can be in the form of complete rankings, top-k rankings, partially missing rankings, as well as consistent and inconsistent pairwise preferences. Several functions for plotting and studying the posterior distributions of parameters are provided. The package also provides functions for estimating the partition function (normalizing constant) of the Mallows rank model, both with the importance sampling algorithm of Vitelli et al. and asymptotic approximation with the IPFP algorithm (Mukherjee, Annals of Statistics, 2016 <doi:10.1214/15-AOS1389>).
In many agricultural, engineering, industrial, post-harvest and processing experiments, the number of factor level changes and hence the total number of changes is of serious concern as such experiments may consists of hard-to-change factors where it is physically very difficult to change levels of some factors or sometime such experiments may require normalization time to obtain adequate operating condition. For this reason, run orders that offer the minimum number of factor level changes and at the same time minimize the possible influence of systematic trend effects on the experimentation have been sought. Factorial designs with minimum changes in factors level may be preferred for such situations as these minimally changed run orders will minimize the cost of the experiments. For method details see, Bhowmik, A.,Varghese, E., Jaggi, S. and Varghese, C. (2017)<doi:10.1080/03610926.2016.1152490>.This package used to construct all possible minimally changed factorial run orders for different experimental set ups along with different statistical criteria to measure the performance of these designs. It consist of the function minFactDesign()
.
Used for predicting a genotypeâ s allelic state at a specific locus/QTL/gene. This is accomplished by using both a genotype matrix and a separate file which has categorizations about loci/QTL/genes of interest for the individuals in the genotypic matrix. A training population can be created from a panel of individuals who have been previously screened for specific loci/QTL/genes, and this previous screening could be summarized into a category. Using the categorization of individuals which have been genotyped using a genome wide marker platform, a model can be trained to predict what category (haplotype) an individual belongs in based on their genetic sequence in the region associated with the locus/QTL/gene. These trained models can then be used to predict the haplotype of a locus/QTL/gene for individuals which have been genotyped with a genome wide platform yet not genotyped for the specific locus/QTL/gene. This package is based off work done by Winn et al 2021. For more specific information on this method, refer to <doi:10.1007/s00122-022-04178-w>.
Earth system dynamics, such as plant dynamics, water bodies, and fire regimes, are widely monitored using spectral indicators obtained from multispectral remote sensing products. There is a great need for spectral index catalogues and computing tools as a result of the quick rise of suggested spectral indices. Unfortunately, the majority of these resources lack a standard Application Programming Interface, are out-of-date, closed-source, or are not linked to a catalogue. We now introduce VegSpecIndex
', a standardised list of spectral indices for studies of the earth system. A thorough inventory of spectral indices is offered by VegSpecIndex
and is connected to an R library. For every spectral index, VegSpecIndex
provides a comprehensive collection of information, such as names, formulae, and source references. The user community may add more items to the catalogue, which will keep VegSpecIndex
up to date and allow for further scientific uses. Additionally, the R library makes it possible to apply the catalogue to actual data, which makes it easier to employ remote sensing resources effectively across a variety of Earth system domains.
Attain excellent covariate balance by matching two treated units and one control unit or vice versa within strata. Using such triples, as opposed to also allowing pairs of treated and control units, allows easier interpretation of the two possible weights of observations and better insensitivity to unmeasured bias in the test statistic. Using triples instead of matching in a fixed 1:2 or 2:1 ratio allows for the match to be feasible in more situations. The rrelaxiv package, which provides an alternative solver for the underlying network flow problems, carries an academic license and is not available on CRAN, but may be downloaded from GitHub
at <https://github.com/josherrickson/rrelaxiv/>. The Gurobi commercial optimization software is required to use the two functions [infsentrip()
] and [triplesIP()
]. These functions are not essential to the main purpose of this package. A free academic license can be obtained at <https://www.gurobi.com/features/academic-named-user-license/>. The gurobi R package can then be installed following the instructions at <https://www.gurobi.com/documentation/9.1/refman/ins_the_r_package.html>.
Estimation and inference methods for the cross-quantilogram. The cross-quantilogram is a measure of nonlinear dependence between two variables, based on either unconditional or conditional quantile functions. It can be considered an extension of the correlogram, which is a correlation function over multiple lag periods that mainly focuses on linear dependency. One can use the cross-quantilogram to detect the presence of directional predictability from one time series to another. This package provides a statistical inference method based on the stationary bootstrap. For detailed theoretical and empirical explanations, see Linton and Whang (2007) for univariate time series analysis and Han, Linton, Oka and Whang (2016) for multivariate time series analysis. The full references for these key publications are as follows: (1) Linton, O., and Whang, Y. J. (2007). The quantilogram: with an application to evaluating directional predictability. Journal of Econometrics, 141(1), 250-282 <doi:10.1016/j.jeconom.2007.01.004>; (2) Han, H., Linton, O., Oka, T., and Whang, Y. J. (2016). The cross-quantilogram: measuring quantile dependence and testing directional predictability between time series. Journal of Econometrics, 193(1), 251-270 <doi:10.1016/j.jeconom.2016.03.001>.
An implementation of functions to display Greek letters on the RStudio (include subscript and superscript indexes) and RGui (without subscripts and only with superscript 1, 2 or 3; because RGui doesn't support printing the corresponding Unicode characters as a string: all subscripts ranging from 0 to 9 and superscripts equal to 0, 4, 5, 6, 7, 8 or 9). The functions in this package do not work properly on the R console. Characters are used via Unicode and encoded as UTF-8 to ensure that they can be viewed on all operating systems. Other characters related to mathematics are included, such as the infinity symbol. All this accessible from very simple commands. This is a package that can be used for teaching purposes, the statistical notation for hypothesis testing can be written from this package and so it is possible to build a course from the swirlify package. Another utility of this package is to create new summary functions that contain the functional form of the model adjusted with the Greek letters, thus making the transition from statistical theory to practice easier. In addition, it is a natural extension of the clisymbols package.
Analyse prescription drug deliveries to calculate several indicators of polypharmacy corresponding to the various definitions found in the literature. Bjerrum, L., Rosholm, J. U., Hallas, J., & Kragstrup, J. (1997) <doi:10.1007/s002280050329>. Chan, D.-C., Hao, Y.-T., & Wu, S.-C. (2009a) <doi:10.1002/pds.1712>. Fincke, B. G., Snyder, K., Cantillon, C., Gaehde, S., Standring, P., Fiore, L., ... Gagnon, D.R. (2005) <doi:10.1002/pds.966>. Hovstadius, B., Astrand, B., & Petersson, G. (2009) <doi:10.1186/1472-6904-9-11>. Hovstadius, B., Astrand, B., & Petersson, G. (2010) <doi:10.1002/pds.1921>. Kennerfalk, A., Ruigómez, A., Wallander, M.-A., Wilhelmsen, L., & Johansson, S. (2002) <doi:10.1345/aph.1A226>. Masnoon, N., Shakib, S., Kalisch-Ellett, L., & Caughey, G. E. (2017) <doi:10.1186/s12877-017-0621-2>. Narayan, S. W., & Nishtala, P. S. (2015) <doi:10.1007/s40801-015-0020-y>. Nishtala, P. S., & Salahudeen, M. S. (2015) <doi:10.1159/000368191>. Park, H. Y., Ryu, H. N., Shim, M. K., Sohn, H. S., & Kwon, J. W. (2016) <doi:10.5414/cp202484>. Veehof, L., Stewart, R., Haaijer-Ruskamp, F., & Jong, B. M. (2000) <doi:10.1093/fampra/17.3.261>.
This package provides a framework for analyzing broth microdilution assays in various 96-well plate designs, visualizing results and providing descriptive and (simple) inferential statistics (i.e. summary statistics and sign test). The functions are designed to add metadata to 8 x 12 tables of absorption values, creating a tidy data frame. Users can choose between clean-up procedures via function parameters (which covers most cases) or user prompts (in cases with complex experimental designs). Users can also choose between two validation methods, i.e. exclusion of absorbance values above a certain threshold or manual exclusion of samples. A function for visual inspection of samples with their absorption values over time for certain group combinations helps with the decision. In addition, the package includes functions to subtract the background absorption (usually at time T0) and to calculate the growth performance compared to a baseline. Samples can be visually inspected with their absorption values displayed across time points for specific group combinations. Core functions of this package (i.e. background subtraction, sample validation and statistics) were inspired by the manual calculations that were applied in Tewes and Muller (2020) <doi:10.1038/s41598-020-67600-7>.
This package provides data set and function for exploration of Multiple Indicator Cluster Survey (MICS) 2017-18 data for Punjab, Pakistan. The results of the present survey are critically important for the purposes of SDG monitoring, as the survey produces information on 32 global SDG indicators. The data was collected from 53,840 households selected at the second stage with systematic random sampling out of a sample of 2,692 clusters selected using Probability Proportional to size sampling. Six questionnaires were used in the survey: (1) a household questionnaire to collect basic demographic information on all de jure household members (usual residents), the household, and the dwelling; (2) a water quality testing questionnaire administered in three households in each cluster of the sample; (3) a questionnaire for individual women administered in each household to all women age 15-49 years; (4) a questionnaire for individual men administered in every second household to all men age 15-49 years; (5) an under-5 questionnaire, administered to mothers (or caretakers) of all children under 5 living in the household; and (6) a questionnaire for children age 5-17 years, administered to the mother (or caretaker) of one randomly selected child age 5-17 years living in the household.
An R implementation of the Critical Path Method (CPM). CPM is a method used to estimate the minimum project duration and determine the amount of scheduling flexibility on the logical network paths within the schedule model. The flexibility is in terms of early start, early finish, late start, late finish, total float and free float. Beside, it permits to quantify the complexity of network diagram through the analysis of topological indicators. Finally, it permits to change the activities duration to perform what-if scenario analysis. The package was built based on following references: To make topological sorting and other graph operation, we use Csardi, G. & Nepusz, T. (2005) <https://www.researchgate.net/publication/221995787_The_Igraph_Software_Package_for_Complex_Network_Research>; For schedule concept, the reference was Project Management Institute (2017) <https://www.pmi.org/pmbok-guide-standards/foundational/pmbok>; For standards terms, we use Project Management Institute (2017) <https://www.pmi.org/pmbok-guide-standards/lexicon>; For algorithms on Critical Path Method development, we use Vanhoucke, M. (2013) <doi:10.1007/978-3-642-40438-2> and Vanhoucke, M. (2014) <doi:10.1007/978-3-319-04331-9>; And, finally, for topological definitions, we use Vanhoucke, M. (2009) <doi:10.1007/978-1-4419-1014-1>.
Levels and changes of productivity and profitability are measured with various indices. The package contains the multiplicatively complete Färe-Primont, Fisher, Hicks-Moorsteen, Laspeyres, Lowe, and Paasche indices, as well as the classic Malmquist productivity index. Färe-Primont and Lowe indices verify the transitivity property and can therefore be used for multilateral or multitemporal comparison. Fisher, Hicks-Moorsteen, Laspeyres, Malmquist, and Paasche indices are not transitive and are only to be used for binary comparison. All indices can also be decomposed into different components, providing insightful information on the sources of productivity and profitability changes. In the use of Malmquist productivity index, the technological change index can be further decomposed into bias technological change components. The package also allows to prohibit technological regression (negative technological change). In the case of the Fisher, Hicks-Moorsteen, Laspeyres, Paasche and the transitive Färe-Primont and Lowe indices, it is furthermore possible to rule out technological change. Deflated shadow prices can also be obtained. Besides, the package allows parallel computing as an option, depending on the user's computer configuration. All computations are carried out with the nonparametric Data Envelopment Analysis (DEA), and several assumptions regarding returns to scale are available. All DEA linear programs are implemented using lp_solve'.
This package provides functions that facilitate and speed up the analysis of data produced by a Syntech servosphere <http://www.ockenfels-syntech.com/products/locomotion-compensation/>, which is equipment for studying the movement behavior of arthropods. This package is designed to make working with data produced from a servosphere easy for someone new to or unfamiliar with R. The functions provided in this package fall into three broad-use categories: functions for cleaning raw data produced by the servosphere software, functions for deriving movement variables based on position data, and functions for summarizing movement variables for easier analysis. These functions are built with functions from the tidyverse package to work efficiently, as a single servosphere file may consist of hundreds of thousands of rows of data and a user may wish to analyze hundreds of files at a time. Many of the movement variables derivable through this package are described in the following papers: Otálora-Luna, Fernando; Dickens, Joseph C. (2011) <doi:10.1371/journal.pone.0020990> Party, Virginie; Hanot, Christophe; Busser, Daniela Schmidt; Rochat, Didier; Renou, Michel (2013) <doi:10.1371/journal.pone.0052897> Bell, William J.; Kramer, Ernest (1980) <doi:10.1007/BF01402908> Becher, Paul G; Guerin, Patrick M. (2009) <doi:10.1016/j.jinsphys.2009.01.006>.
The bivariate copula mixed model for meta-analysis of diagnostic test accuracy studies in Nikoloulopoulos (2015) <doi:10.1002/sim.6595> and Nikoloulopoulos (2018) <doi:10.1007/s10182-017-0299-y>. The vine copula mixed model for meta-analysis of diagnostic test accuracy studies accounting for disease prevalence in Nikoloulopoulos (2017) <doi:10.1177/0962280215596769> and also accounting for non-evaluable subjects in Nikoloulopoulos (2020) <doi:10.1515/ijb-2019-0107>. The hybrid vine copula mixed model for meta-analysis of diagnostic test accuracy case-control and cohort studies in Nikoloulopoulos (2018) <doi:10.1177/0962280216682376>. The D-vine copula mixed model for meta-analysis and comparison of two diagnostic tests in Nikoloulopoulos (2019) <doi:10.1177/0962280218796685>. The multinomial quadrivariate D-vine copula mixed model for meta-analysis of diagnostic tests with non-evaluable subjects in Nikoloulopoulos (2020) <doi:10.1177/0962280220913898>. The one-factor copula mixed model for joint meta-analysis of multiple diagnostic tests in Nikoloulopoulos (2022) <doi:10.1111/rssa.12838>. The multinomial six-variate 1-truncated D-vine copula mixed model for meta-analysis of two diagnostic tests accounting for within and between studies dependence in Nikoloulopoulos (2024) <doi:10.1177/09622802241269645>. The 1-truncated D-vine copula mixed models for meta-analysis of diagnostic accuracy studies without a gold standard (Nikoloulopoulos, 2025) <doi:10.1093/biomtc/ujaf037>.
Set of tools for analyzing vertical fuel continuity at the tree level using Airborne Laser Scanning data. The workflow consisted of: 1) calculating the vertical height profiles of each segmented tree; 2) identifying gaps and fuel layers; 3) estimating the distance between fuel layers; and 4) retrieving the fuel layers base height and depth. Additionally, other functions recalculate previous metrics after considering distances greater than certain threshold. Moreover, the package calculates: i) the percentage of Leaf Area Density comprised in each fuel layer, ii) remove fuel layers with Leaf Area Density (LAD) percentage less than 10, and iii) recalculate the distances among the reminder ones. On the other hand, it identifies the crown base height (CBH) based on different criteria: the fuel layer with the highest LAD percentage and the fuel layers located at the largest- and at the last-distance. When there is only one fuel layer, it also identifies the CBH performing a segmented linear regression (breaking points) on the cumulative sum of LAD as a function of height. Finally, a collection of plotting functions is developed to represent: i) the initial gaps and fuel layers; ii) the fuels base height, depths and gaps with distances greater than certain threshold and, iii) the CBH based on different criteria. The methods implemented in this package are original and have not been published elsewhere.
This package implements Gibbs sampling and Bayes factors for multinomial models with linear inequality constraints on the vector of probability parameters. As special cases, the model class includes models that predict a linear order of binomial probabilities (e.g., p[1] < p[2] < p[3] < .50) and mixture models assuming that the parameter vector p must be inside the convex hull of a finite number of predicted patterns (i.e., vertices). A formal definition of inequality-constrained multinomial models and the implemented computational methods is provided in: Heck, D.W., & Davis-Stober, C.P. (2019). Multinomial models with linear inequality constraints: Overview and improvements of computational methods for Bayesian inference. Journal of Mathematical Psychology, 91, 70-87. <doi:10.1016/j.jmp.2019.03.004>. Inequality-constrained multinomial models have applications in the area of judgment and decision making to fit and test random utility models (Regenwetter, M., Dana, J., & Davis-Stober, C.P. (2011). Transitivity of preferences. Psychological Review, 118, 42â 56, <doi:10.1037/a0021150>) or to perform outcome-based strategy classification to select the decision strategy that provides the best account for a vector of observed choice frequencies (Heck, D.W., Hilbig, B.E., & Moshagen, M. (2017). From information processing to decisions: Formalizing and comparing probabilistic choice models. Cognitive Psychology, 96, 26â 40. <doi:10.1016/j.cogpsych.2017.05.003>).