This package contains an implementation of AIMS -- Absolute Intrinsic Molecular Subtyping. It contains necessary functions to assign the five intrinsic molecular subtypes (Luminal A, Luminal B, Her2-enriched, Basal-like, Normal-like). Assignments could be done on individual samples as well as on dataset of gene expression data.
Remind allows you to remind yourself of upcoming events and appointments. Each reminder or alarm can consist of a message sent to standard output, or a program to be executed. It also features: sophisticated date calculation, moon phases, sunrise/sunset, Hebrew calendar, alarms, PostScript output and proper handling of holidays.
This package provides an implementation of the Uniform Manifold Approximation and Projection dimensionality reduction by McInnes et al. (2018). It also provides means to transform new data and to carry out supervised dimensionality reduction. An implementation of the related LargeVis method of Tang et al. (2016) is also provided.
Modified Poisson and least-squares regression analyses for binary outcomes of Zou (2004) <doi:10.1093/aje/kwh090> and Cheung (2007) <doi:10.1093/aje/kwm223> have been standard multivariate analysis methods to estimate risk ratio and risk difference in clinical and epidemiological studies. This R package involves an easy-to-handle function to implement these analyses by simple commands. Missing data analysis tools (multiple imputation) are also involved. In addition, recent studies have shown the ordinary robust variance estimator possibly has serious bias under small or moderate sample size situations for these methods. This package also provides computational tools to calculate alternative accurate confidence intervals (Noma and Gosho (2024) <Forthcoming>).
This package provides a Bayesian model averaging approach to causal effect estimation based on the BCEE algorithm. Currently supports binary or continuous exposures and outcomes. For more details, see Talbot et al. (2015) <doi:10.1515/jci-2014-0035> Talbot and Beaudoin (2022) <doi:10.1515/jci-2021-0023>.
This package implements a wide variety of one- and two-parameter Bayesian CRM designs. The program can run interactively, allowing the user to enter outcomes after each cohort has been recruited, or via simulation to assess operating characteristics. See Sweeting et al. (2013): <doi:10.18637/jss.v054.i13>.
Package for Breed Wheat Genomic Selection Pipeline. The R package BWGS is developed by Louis Gautier Tran <louis.gautier.tran@gmail.com> and Gilles Charmet <gilles.charmet@inra.fr>. This repository is forked from original repository <https://forgemia.inra.fr/umr-gdec/bwgs> and modified as a R package.
Implementation of algorithms for cutting numerical values exhibiting a potentially highly skewed distribution into evenly distributed groups (bins). This functionality can be applied for binning discrete values, such as counts, as well as for discretization of continuous values, for example, during generation of features used in machine learning algorithms.
Discover causality for bivariate categorical data. This package aims to enable users to discover causality for bivariate observational categorical data. See Ni, Y. (2022) <arXiv:2209.08579> "Bivariate Causal Discovery for Categorical Data via Classification with Optimal Label Permutation. Advances in Neural Information Processing Systems 35 (in press)".
Converts customer transaction data (ID, purchase date) into a R6 class called customer. The class stores various customer analytics calculations at the customer level. The package also contains functionality to convert data in the R6 class to data.frames that can serve as inputs for various customer analytics models.
This package contains a function, also called cchs', that calculates Estimator III of Borgan et al (2000), <DOI:10.1023/A:1009661900674>. This estimator is for fitting a Cox proportional hazards model to data from a case-cohort study where the subcohort was selected by stratified simple random sampling.
Diff, patch and merge for data frames. Document changes in data sets and use them to apply patches. Changes to data can be made visible by using render_diff(). The V8 package is used to wrap the daff.js JavaScript library which is included in the package.
This package provides a collection of functions to perform Detrended Fluctuation Analysis (DFA) and Detrended Cross-Correlation Analysis (DCCA). This package implements the results presented in Prass, T.S. and Pumi, G. (2019). "On the behavior of the DFA and DCCA in trend-stationary processes" <arXiv:1910.10589>.
Feature Ordering by Integrated R square Dependence (FORD) is a variable selection algorithm based on the new measure of dependence: Integrated R2 Dependence Coefficient (IRDC). For more information, see the paper: Azadkia and Roudaki (2025),"A New Measure Of Dependence: Integrated R2" <doi:10.48550/arXiv.2505.18146>.
This package provides a set of functions that facilitate basic data manipulation and cleaning for statistical analysis including functions for finding and fixing duplicate rows and columns, missing values, outliers, and special characters in column and row names and functions for checking data consistency, distribution, quality, reliability, and structure.
Some methods for the inference and clustering of univariate and multivariate functional data, using a generalization of Mahalanobis distance, along with some functions useful for the analysis of functional data. For further details, see Martino A., Ghiglietti, A., Ieva, F. and Paganoni A. M. (2017) <arXiv:1708.00386>.
Computes measures of multivariate kurtosis, matrices of fourth-order moments and cumulants, kurtosis-based projection pursuit. Franceschini, C. and Loperfido, N. (2018, ISBN:978-3-319-73905-2). "An Algorithm for Finding Projections with Extreme Kurtosis". Loperfido, N. (2017,ISSN:0024-3795). "A New Kurtosis Matrix, with Statistical Applications".
Spatial and spatio-temporal modelling of point patterns using the log-Gaussian Cox process. Bayesian inference for spatial, spatiotemporal, multivariate and aggregated point processes using Markov chain Monte Carlo. See Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle (2015) <doi:10.18637/jss.v063.i07>.
This package provides functions for MultiDimensional Feature Selection (MDFS): calculating multidimensional information gains, scoring variables, finding important variables, plotting selection results. This package includes an optional CUDA implementation that speeds up information gain calculation using NVIDIA GPGPUs. R. Piliszek et al. (2019) <doi:10.32614/RJ-2019-019>.
Compute and select tuning parameters for the MRCE estimator proposed by Rothman, Levina, and Zhu (2010) <doi:10.1198/jcgs.2010.09188>. This estimator fits the multiple output linear regression model with a sparse estimator of the error precision matrix and a sparse estimator of the regression coefficient matrix.
Multivariate Analysis methods and data sets used in John Marden's book Multivariate Statistics: Old School (2015) <ISBN:978-1456538835>. This also serves as a companion package for the STAT 571: Multivariate Analysis course offered by the Department of Statistics at the University of Illinois at Urbana-Champaign ('UIUC').
This package provides methods for detecting signals related to (adverse event, medical product e.g. drugs, vaccines) pairs, a data generation function for simulating pharmacovigilance datasets, and various utility functions. For more details please see Liu A., Mukhopadhyay R., and Markatou M. <doi:10.48550/arXiv.2410.01168>.
Facilitates the automatic detection of acoustic signals, providing functions to diagnose and optimize the performance of detection routines. Detections from other software can also be explored and optimized. This package has been peer-reviewed by rOpenSci. Araya-Salas et al. (2022) <doi:10.1101/2022.12.13.520253>.
Fits two-dimensional data by means of orthogonal nonlinear least-squares using Levenberg-Marquardt minimization and provides functionality for fit diagnostics and plotting. Delivers the same results as the ODRPACK Fortran implementation described in Boggs et al. (1989) <doi:10.1145/76909.76913>, but is implemented in pure R.