It contains some example datasets used in bibliometrix'. The data are bibliographic datasets exported from the SCOPUS (<https://scopus.com>) and Clarivate Analytics Web of Science (<https://www.webofscience.com/>) databases. They can be used to test the different features of the package bibliometrix (<https://bibliometrix.org>).
Receives two vectors, computes appropriate function for group comparison (i.e., t-test, Mann-Whitney; equality of variances), and reports the findings (mean/median, standard deviation, test statistic, p-value, effect size) in APA format (Fay, M.P., & Proschan, M.A. (2010)<DOI: 10.1214/09-SS051>).
Extends the mlr3 machine learning framework with spatio-temporal resampling methods to account for the presence of spatiotemporal autocorrelation (STAC) in predictor variables. STAC may cause highly biased performance estimates in cross-validation if ignored. A JSS article is available at <doi:10.18637/jss.v111.i07>.
This is an R implementation of the netinf algorithm (Gomez Rodriguez, Leskovec, and Krause, 2010)<doi:10.1145/1835804.1835933>. Given a set of events that spread between a set of nodes the algorithm infers the most likely stable diffusion network that is underlying the diffusion process.
This package performs model-based tensor clustering methods including Tensor Gaussian Mixture Model (TGMM), Tensor Envelope Mixture Model (TEMM) by Deng and Zhang (2021) <DOI: 10.1111/biom.13486>, Doubly-Enhanced EM (DEEM) algorithm by Mai, Zhang, Pan and Deng (2021) <DOI: 10.1080/01621459.2021.1904959>.
An educational toolkit for learning statistical concepts through interactive exploration. Provides functions for basic statistics (mean, variance, etc.) and probability distributions with step-by-step explanations and interactive learning modes. Each function can be used for simple calculations, detailed learning with explanations, or interactive practice with feedback.
Create Pairwise Comparison Matrices for use in the Analytic Hierarchy Process. The Pairwise Comparison Matrix created will be a logical matrix, which unlike a random comparison matrix, is similar to what a rational decision maker would create on the basis of a preference vector for the alternatives considered.
The model.matrix() function in R is convenient for transforming training dataset for modeling. But it does not save any parameter used in transformation, so it is hard to apply the same transformation to test dataset or new dataset. This package is created to solve the problem.
Computes optimal cutpoints for diagnostic tests or continuous markers. Various approaches for selecting optimal cutoffs have been implemented, including methods based on cost-benefit analysis and diagnostic test accuracy measures (Sensitivity/Specificity, Predictive Values and Diagnostic Likelihood Ratios). Numerical and graphical output for all methods is easily obtained.
Cucumber is a tool for running automated tests written in plain language. Because they're written in plain language, they can be read by anyone on your team. Because they can be read by anyone, you can use them to help improve communication, collaboration and trust on your team.
Identifies an optimal transformation of a surrogate marker such that the proportion of treatment effect explained can be inferred based on the transformation of the surrogate and nonparametrically estimates two model-free quantities of this proportion. Details are described in Wang et al (2020) <doi:10.1093/biomet/asz065>.
This package lets you create in just a few lines of R code a nice user interface to modify the data or the graphical parameters of one or multiple interactive charts. It is useful to quickly explore visually some data or for package developers to generate user interfaces easy to maintain.
This package includes the data necessary to run functions and examples in epimutacions package. Collection of DNA methylation data. The package contains 2 datasets: (1) Control ( GEO: GSE104812), (GEO: GSE97362) case samples; and (2) reference panel (GEO: GSE127824). It also contains candidate regions to be epimutations in 450k methylation arrays.
Uses locality sensitive hashing and creates a neighbourhood graph for a data set and calculates the adjusted rank index value for the same. It uses Gaussian random planes to decide the nature of a given point. Datar, Mayur, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni(2004) <doi:10.1145/997817.997857>.
This package creates interactive bubble chart visualizations for Shiny applications using the Nivo circle packing library. Provides an htmlwidgets wrapper around the Nivo circle packing chart, enabling hierarchical data visualization with customizable colors, labels, and interactive features including click and hover events. For more information about Nivo', see <https://nivo.rocks/>.
This package provides a unique dataset of historical forest cover across all states in the United States, spanning from 1907 to 2017, along with 1630 as a reference year. This dataset is important for understanding environmental changes and land use trends over time. It includes functionality for easy access of the data.
Offers a comprehensive solution for managing empty states in Shiny applications. It provides tools to create both default and customizable components for scenarios where data is absent or doesn't match user-defined filters. The package prioritizes user experience, ensuring clarity and consistency even when data is not available to display.
This is a package for saving matrices, arrays and similar objects into file artifacts, and loading them back into memory. This is a more portable alternative to serialization of such objects into RDS files. Each artifact is associated with metadata for further interpretation; downstream applications can enrich this metadata with context-specific properties.
eval-in-repl provides a consistent ESS-like evaluation interface for various REPLs. In particular, it mimics ESS' C-RET binding, which sends a line or region to an appropriately configured shell. This package provides just the core of eval-in-repl---for the languages themselves, see their respective packages.
Supports the definition of sets of properties on objects. Observers can listen to changes on individual properties or the set as a whole. The properties are meant to be fully self-describing. In support of this, there is a framework for defining enumerated types, as well as other bounded types, as S4 classes.
Access open data from <https://www.threesixtygiving.org>, a database of charitable grant giving in the UK operated by 360Giving'. The package provides functions to search and retrieve data on charitable grant giving, and process that data into tidy formats. It relies on the 360Giving data standard, described at <https://standard.threesixtygiving.org/>.
Climate stability measures are not formalized in the literature and tools for generating stability metrics from existing data are nascent. This package provides tools for calculating climate stability from raster data encapsulating climate change as a series of time slices. The methods follow Owens and Guralnick <doi:10.17161/bi.v14i0.9786> Biodiversity Informatics.
Inference for the Lorenz and penalized Lorenz regressions. More broadly, the package proposes functions to assess inequality and graphically represent it. The Lorenz Regression procedure is introduced in Heuchenne and Jacquemain (2022) <doi:10.1016/j.csda.2021.107347> and in Jacquemain, A., C. Heuchenne, and E. Pircalabelu (2024) <doi:10.1214/23-EJS2200>.
This package provides a quasiquoter for raw string literals, i.e. string literals that don't recognise the standard escape sequences. Basically, they make your code more readable by freeing you from the responsibility to escape backslashes. They are useful when working with regular expressions, DOS/Windows paths and markup languages (such as XML).