Bayesian methods for estimating developmental age from ordinal dental data. For an explanation of the model used, see Konigsberg (2015) <doi:10.3109/03014460.2015.1045430>. For details on the conditional correlation correction, see Sgheiza (2022) <doi:10.1016/j.forsciint.2021.111135>. Dental scoring is based on Moorrees, Fanning, and Hunt (1963) <doi:10.1177/00220345630420062701>.
The programs were developed for estimation of parameters and testing exponential versus Pareto distribution during our work on hydrologic extremes. See Kozubowski, T.J., A.K. Panorska, F. Qeadan, and A. Gershunov (2007) <doi:10.1080/03610910802439121>, and Panorska, A.K., A. Gershunov, and T.J. Kozubowski (2007) <doi:10.1007/978-0-387-34918-3_26>.
Generate pseudonymous animal names that are delightful and easy to remember like the Likable Leech and the Proud Chickadee. A unique pseudonym can be created for every unique element in a vector or row in a data frame. Pseudonyms can be customized and tracked over time, so that the same input is always assigned the same pseudonym.
An implementation of the time-series Susceptible-Infected-Recovered (TSIR) model using a number of different fitting options for infectious disease time series data. The manuscript based on this package can be found here <doi:10.1371/journal.pone.0185528>. The method implemented here is described by Finkenstadt and Grenfell (2000) <doi:10.1111/1467-9876.00187>.
Calculates the number of true positives and false positives from a dataset formatted for Jackknife alternative free-response receiver operating characteristic which is used for statistical analysis which is explained in the book Chakraborty DP (2017), "Observer Performance Methods for Diagnostic Imaging - Foundations, Modeling, and Applications with R-Based Examples", Taylor-Francis <https://www.crcpress.com/9781482214840>.
This package allows estimation and modelling of flight costs in animal (vertebrate) flight, implementing the aerodynamic power model. Flight performance is estimated based on basic morphological measurements such as body mass, wingspan and wing area. Afpt
can be used to make predictions on how animals should adjust their flight behaviour and wingbeat kinematics to varying flight conditions.
rmlint
finds space waste and other broken things on your file system and offers to remove it. rmlint
can find:
duplicate files and duplicate directories,
non-stripped binaries (i.e. binaries with debug symbols),
broken symbolic links,
empty files and directories,
files with broken user and/or group ID.
Rho is used to test the generalization of inter rater reliability (IRR) statistics. Calculating rho starts by generating a large number of simulated, fully-coded data sets: a sizable collection of hypothetical populations, all of which have a kappa value below a given threshold -- which indicates unacceptable agreement. Then kappa is calculated on a sample from each of those sets in the collection to see if it is equal to or higher than the kappa in then real sample. If less than five percent of the distribution of samples from the simulated data sets is greater than actual observed kappa, the null hypothesis is rejected and one can conclude that if the two raters had coded the rest of the data, we would have acceptable agreement (kappa above the threshold).
Fits latent threshold model for simulated data and describes how to adjust model using real data. Implements algorithm proposed by Nakajima and West (2013) <doi:10.1080/07350015.2012.747847>. This package has a function to generate data, a function to configure priors and a function to fit the model. Examples may be checked inside the demonstration files.
Calculates the Boltzmann entropy of a landscape gradient. This package uses the analytical method created by Gao, P., Zhang, H. and Li, Z., 2018 (<doi:10.1111/tgis.12315>) and by Gao, P. and Li, Z., 2019 (<doi:10.1007/s10980-019-00854-3>). It also extend the original ideas by allowing calculations on data with missing values.
An integrated set of tools to analyze and simulate networks based on exponential-family random graph models (ERGMs). ergm is a part of the Statnet suite of packages for network analysis. See Hunter, Handcock, Butts, Goodreau, and Morris (2008) <doi:10.18637/jss.v024.i03> and Krivitsky, Hunter, Morris, and Klumb (2023) <doi:10.18637/jss.v105.i06>.
Lognormal models have broad applications in various research areas such as economics, actuarial science, biology, environmental science and psychology. The estimation problem in lognormal models has been extensively studied. This R package fuel implements thirty-nine existing and newly proposed estimators. See Zhang, F., and Gou, J. (2020), A unified framework for estimation in lognormal models, Technical report.
Computation of Quantitative Trait Loci hits in the selected gene set. Performing gene set validation with Quantitative Trait Loci information. Performing gene set enrichment analysis with available Quantitative Trait Loci data and computation of statistical significance value from gene set analysis. Obtaining the list of Quantitative Trait Loci hit genes along with their overlapped Quantitative Trait Loci names.
This package implements the generalized Gauss Markov regression, this is useful when both predictor and response have uncertainty attached to them and also when covariance within the predictor, within the response and between the predictor and the response is present. Base on the results published in guide ISO/TS 28037 (2010) <https://www.iso.org/standard/44473.html>.
The matrix factor model has drawn growing attention for its advantage in achieving two-directional dimension reduction simultaneously for matrix-structured observations. In contrast to the Principal Component Analysis (PCA)-based methods, we propose a simple Iterative Alternating Least Squares (IALS) algorithm for matrix factor model, see the details in He et al. (2023) <arXiv:2301.00360>
.
Estimating height of forest plant is one of the key challenges of recent times. This package will help to fit and validate AI (Artificial Intelligence) based machine learning algorithms for estimation of height of conifer trees based on diameter at breast height as explanatory variable using algorithm of Paul et al. (2022) <doi:10.1371/journal.pone.0270553>..
In view of the analysis of the structural characteristics of the tripartite network has been complete, however, there is still a lack of a unified operation that can quickly obtain the corresponding characteristics of the tripartite network. To solve this insufficiency, ILSM was designed for supporting calculating such metrics of tripartite networks by functions of this R package.
An implementation of the Log Cumulative Probability Model (LCPM) and Proportional Probability Model (PPM) for which the Maximum Likelihood Estimates are determined using constrained optimization. This implementation accounts for the implicit constraints on the parameter space. Other features such as standard errors, z tests and p-values use standard methods adapted from the results based on constrained optimization.
An implementation of the Rapid Assessment Method for Older People or RAM-OP <https://www.helpage.org/resource/rapid-assessment-method-for-older-people-ramop-manual/>. It provides various functions that allow the user to design and plan the assessment and analyse the collected data. RAM-OP provides accurate and reliable estimates of the needs of older people.
Load the Just Another Gibbs Sampling (JAGS) module pexm'. The module provides the tools to work with the Piecewise Exponential (PE) distribution in a Bayesian model with the corresponding Markov Chain Monte Carlo algorithm (Gibbs Sampling) implemented via JAGS. Details about the module implementation can be found in Mayrink et al. (2021) <doi:10.18637/jss.v100.i08>.
Carries out model-based clustering or classification using parsimonious Gaussian mixture models. McNicholas
and Murphy (2008) <doi:10.1007/s11222-008-9056-0>, McNicholas
(2010) <doi:10.1016/j.jspi.2009.11.006>, McNicholas
and Murphy (2010) <doi:10.1093/bioinformatics/btq498>, McNicholas
et al. (2010) <doi:10.1016/j.csda.2009.02.011>.
This package provides a collection of functions to do model-based phylogenetic analysis. It includes functions to calculate community phylogenetic diversity, to estimate correlations among functional traits while accounting for phylogenetic relationships, and to fit phylogenetic generalized linear mixed models. The Bayesian phylogenetic generalized linear mixed models are fitted with the INLA package (<https://www.r-inla.org>).
This package provides a collection of functions that enable easy access and updating of a database of data over time. More specifically, the package facilitates type-2 history for data-warehouses and provides a number of Quality of life improvements for working on SQL databases with R. For reference see Ralph Kimball and Margy Ross (2013, ISBN 9781118530801).
This package provides functions to produce a fully fledged geo-spatial object extent as a SpatialPolygonsDataFrame
'. Also included are functions to generate polygons from raster data using quadmesh techniques, a round number buffered extent, and general spatial-extent and raster-like extent helpers missing from the originating packages. Some latitude-based tools for polar maps are included.