Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package performs kernel based estimates on in-memory raster images from the raster package. These kernel estimates include local means variances, modes, and quantiles. All results are in the form of raster images, preserving original resolution and projection attributes.
Random forest with a variety of additional features for regression, classification and survival analysis. The features include: parallel computing with OpenMP, embedded model for selecting the splitting variable, based on Zhu, Zeng & Kosorok (2015) <doi:10.1080/01621459.2015.1036994>, subject weight, variable weight, tracking subjects used in each tree, etc.
This package provides access to a suite of geospatial data layers for wildfire management, fuel modeling, ecology, natural resource management, climate, conservation, etc., via the LANDFIRE (<https://www.landfire.gov/>) Product Service ('LFPS') API.
Decoupled (e.g. separate averages) and censored (e.g. > 100 species) variables are continually reported by many well-established organizations (e.g. World Health Organization (WHO), Centers for Disease Control and Prevention (CDC), World Bank, and various national censuses). The challenge therefore is to infer what the original data could have been given summarized information. We present an R package that reverse engineers decoupled and/or censored count data with two main functions. The cnbinom.pars function estimates the average and dispersion parameter of a censored univariate frequency table. The rec function reverse engineers summarized data into an uncensored bivariate table of probabilities.
To detecting rare variants for binary traits using general pedigrees, the pedigree disequilibrium tests are proposed by collapsing rare haplotypes/variants with/without weights. To run the test, MERLIN is needed in Linux for haplotyping.
This is a port of Jonathan Shewchuk's Triangle library to R. From his description: "Triangle generates exact Delaunay triangulations, constrained Delaunay triangulations, conforming Delaunay triangulations, Voronoi diagrams, and high-quality triangular meshes. The latter can be generated with no small or large angles, and are thus suitable for finite element analysis.".
This package provides functions to access data from the Strava v3 API <https://developers.strava.com/>.
This package provides a statistical tool for multivariate modeling and clustering using stepwise cluster analysis. The modeling output of rSCA is constructed as a cluster tree to represent the complicated relationships between multiple dependent and independent variables. A free tool (named rSCA Tree Generator) for visualizing the cluster tree from rSCA is also released and it can be downloaded at <https://rscatree.weebly.com/>.
This package produces population distribution of disease risk and statistical risk categories, and predicts risks for individuals with genotype information.
Computes linear Bayesian spectral estimates from multirate data for second-order stationary time series. Provides credible intervals and methods for plotting various spectral estimates. Please see the paper `Should we sample a time series more frequently? (doi below) for a full description of and motivation for the methodology.
Tool for the analysis Mass Spectrometry (MS) data in the context of immunopeptidomic analysis for the identification of hybrid peptides and the predictions of binding affinity of all peptides using netMHCpan <doi:10.1093/nar/gkaa379> while providing a summary of the netMHCpan output. RHybridFinder (RHF) is destined for researchers who are looking to analyze their MS data for the purpose of identification of potential spliced peptides. This package, developed mainly in base R, is based on the workflow published by Faridi et al. in 2018 <doi:10.1126/sciimmunol.aar3947>.
This package provides a flexible alternative to the built-in rank() function called smartrank(). Optionally rank categorical variables by frequency (instead of in alphabetical order), and control whether ranking is based on descending/ascending order. smartrank() is suitable for both numerical and categorical data.
Estimates the rank intraclass correlation coefficient (ICC) for clustered continuous and ordinal data. See Tu et al. (2023) <DOI:10.1002/sim.9864> for details.
This package provides functions to have nice rmarkdown outputs of the seasonal and trading day adjustment models made with RJDemetra'.
Quickly computes polygenic scores from GWAS summary statistics of either case-control or quantitative traits without parameter tuning. Reales,G., Vigorito, E., Kelemen,M., Wallace,C. (2021) <doi:10.1101/2020.07.24.220392> "RápidoPGS: A rapid polygenic score calculator for summary GWAS data without a test dataset".
This package implements the RecMap MP2 construction heuristic <doi:10.1109/INFVIS.2004.57>. This algorithm draws maps according to a given statistical value, e.g., election results, population, or epidemiological data. The basic idea of the RecMap algorithm is that each map region, e.g., different countries, is represented by a rectangle. The area of each rectangle represents the statistical value provided as input to maintain zero cartographic error. Computationally intensive tasks are implemented in C++. The included vignette documents recmap algorithm usage.
This package provides a framework for estimating ensembles of meta-analytic, meta-regression, and multilevel models (assuming either presence or absence of the effect, heterogeneity, publication bias, and moderators). The RoBMA framework uses Bayesian model-averaging to combine the competing meta-analytic models into a model ensemble, weights the posterior parameter distributions based on posterior model probabilities and uses Bayes factors to test for the presence or absence of the individual components (e.g., effect vs. no effect; Bartoš et al., 2022, <doi:10.1002/jrsm.1594>; Maier, Bartoš & Wagenmakers, 2022, <doi:10.1037/met0000405>; Bartoš et al., 2025, <doi:10.1037/met0000737>). Users can define a wide range of prior distributions for the effect size, heterogeneity, publication bias (including selection models and PET-PEESE), and moderator components. The package provides convenient functions for summary, visualizations, and fit diagnostics.
This package implements efficient simulation procedures to estimate tail loss probabilities and conditional excess for a stock portfolio. The log-returns are assumed to follow a t-copula model with generalized hyperbolic or t marginals.
MsgPack header files are provided for use by R packages, along with the ability to access, create and alter MsgPack objects directly from R. MsgPack is an efficient binary serialization format. It lets you exchange data among multiple languages like JSON but it is faster and smaller. Small integers are encoded into a single byte, and typical short strings require only one extra byte in addition to the strings themselves. This package provides headers from the msgpack-c implementation for C and C++(11) for use by R, particularly Rcpp'. The included msgpack-c headers are licensed under the Boost Software License (Version 1.0); the code added by this package as well the R integration are licensed under the GPL (>= 2). See the files COPYRIGHTS and AUTHORS for a full list of copyright holders and contributors to msgpack-c'.
High resolution vector country boundaries derived from Natural Earth data, can be plotted in rworldmap.
Inference of relatedness coefficients from a bi-allelic genotype matrix using a Maximum Likelihood estimation, Laporte, F., Charcosset, A. and Mary-Huard, T. (2017) <doi:10.1111/biom.12634>.
Generate basic charts either by custom applications, or from a small script launched from the system console, or within the R console. Two ASCII text files are necessary: (1) The graph parameters file, which name is passed to the function rplotengine()'. The user can specify the titles, choose the type of the graph, graph output formats (e.g. png, eps), proportion of the X-axis and Y-axis, position of the legend, whether to show or not a grid at the background, etc. (2) The data to be plotted, which name is specified as a parameter ('data_filename') in the previous file. This data file has a tabulated format, with a single character (e.g. tab) between each column. Optionally, the file could include data columns for showing confidence intervals.
The Nearest Neighbor Descent method for finding approximate nearest neighbors by Dong and co-workers (2010) <doi:10.1145/1963405.1963487>. Based on the Python package PyNNDescent <https://github.com/lmcinnes/pynndescent>.
An implementation of easy tools for outlier robust inference in two-stage least squares (2SLS) models. The user specifies a reference distribution against which observations are classified as outliers or not. After removing the outliers, adjusted standard errors are automatically provided. Furthermore, several statistical tests for the false outlier detection rate can be calculated. The outlier removing algorithm can be iterated a fixed number of times or until the procedure converges. The algorithms and robust inference are described in more detail in Jiao (2019) <https://drive.google.com/file/d/1qPxDJnLlzLqdk94X9wwVASptf1MPpI2w/view>.