Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Generates a project and repo for easy initialization of a GitHub repo for R workshops. The repo includes a README with instructions to ensure that all users have the needed packages, an RStudio project with the right directories and the proper data. The repo can then be used for hosting code taught during the workshop.
Processes standard recommendation datasets (e.g., a user-item rating matrix) as input and generates rating predictions and lists of recommended items. Standard algorithm implementations which are included in this package are the following: Global/Item/User-Average baselines, Weighted Slope One, Item-Based KNN, User-Based KNN, FunkSVD, BPR and weighted ALS. They can be assessed according to the standard offline evaluation methodology (Shani, et al. (2011) <doi:10.1007/978-0-387-85820-3_8>) for recommender systems using measures such as MAE, RMSE, Precision, Recall, F1, AUC, NDCG, RankScore and coverage measures. The package (Coba, et al.(2017) <doi: 10.1007/978-3-319-60042-0_36>) is intended for rapid prototyping of recommendation algorithms and education purposes.
This package provides a Minimal Example Package which demonstrates mlpack use via C++ Code from R.
This package provides a toolkit for Commodities analytics', risk management and trading professionals. Includes functions for API calls to <https://commodities.morningstar.com/#/>, <https://developer.genscape.com/>, and <https://www.bankofcanada.ca/valet/docs>.
We implement the algorithm estimating the parameters of the robust regression model with compositional covariates. The model simultaneously treats outliers and provides reliable parameter estimates. Publication reference: Mishra, A., Mueller, C.,(2019) <arXiv:1909.04990>.
Pointwise generation and display of attractors (prefractals) of the random iterated function system (RIFS) for various combinations of probabilistic and geometric parameters of some fixed point sets (protofractals), described by Bukhovets A.G. (2012) <doi:10.1134/S0005117912020154>.
Collection of functions for fitting distributions to given data or by known quantiles. Two main functions fit.perc() and fit.cont() provide users a GUI that allows to choose a most appropriate distribution without any knowledge of the R syntax. Note, this package is a part of the rrisk project.
This package provides methods to compute chemical similarity between two or more reactions and molecules. Allows masking of chemical substructures for weighted similarity computations. Uses packages rCDK and fingerprint for cheminformatics functionality. Methods for reaction similarity and sub-structure masking are as described in: Giri et al. (2015) <doi:10.1093/bioinformatics/btv416>.
This package implements two-sample tests for paired data with missing values (Fong, Huang, Lemos and McElrath 2018, Biostatics, <doi:10.1093/biostatistics/kxx039>) and modified Wilcoxon-Mann-Whitney two sample location test, also known as the Fligner-Policello test.
The goal of rFIA is to increase the accessibility and use of the United States Forest Services (USFS) Forest Inventory and Analysis (FIA) Database by providing a user-friendly, open source toolkit to easily query and analyze FIA Data. Designed to accommodate a wide range of potential user objectives, rFIA simplifies the estimation of forest variables from the FIA Database and allows all R users (experts and newcomers alike) to unlock the flexibility inherent to the Enhanced FIA design. Specifically, rFIA improves accessibility to the spatial-temporal estimation capacity of the FIA Database by producing space-time indexed summaries of forest variables within user-defined population boundaries. Direct integration with other popular R packages (e.g., dplyr', tidyr', and sf') facilitates efficient space-time query and data summary, and supports common data representations and API design. The package implements design-based estimation procedures outlined by Bechtold & Patterson (2005) <doi:10.2737/SRS-GTR-80>, and has been validated against estimates and sampling errors produced by FIA EVALIDator'. Current development is focused on the implementation of spatially-enabled model-assisted and model-based estimators to improve population, change, and ratio estimates.
The aim of the report package is to bridge the gap between RĂ¢ s output and the formatted results contained in your manuscript. This package converts statistical models and data frames into textual reports suited for publication, ensuring standardization and quality in results reporting.
Real-time quantitative polymerase chain reaction (qPCR) data by Rutledge et al. (2004) <doi:10.1093/nar/gnh177> in tidy format. The data comprises a six-point, ten-fold dilution series, repeated in five independent runs, for two different amplicons. In each run, each standard concentration is replicated four times. For the original raw data file see the Supplementary Data section: <https://academic.oup.com/nar/article/32/22/e178/2375678#supplementary-data>.
This package provides functions to have nice rmarkdown outputs of the seasonal and trading day adjustment models made with RJDemetra'.
An algorithm is proposed to estimate regression kink model proposed by the paper, Lixiong Yang and Jen-Je Su (2018) <doi:10.1016/j.jimonfin.2018.06.002>.
Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Candes, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis?. Journal of the ACM (JACM), 58(3), 11. prove that we can recover each component individually under some suitable assumptions. It is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the L1 norm. This package implements this decomposition algorithm resulting with Robust PCA approach.
Streamlines data preprocessing, analysis, and visualization for association rule mining. Designed to work with the arules package, features include discretizing data frames, generating rule set intersections, and visualizing rules with heatmaps and Euler diagrams. RulesTools also includes a dataset on Brook trout detection from Nolan et al. (2022) <doi:10.1007/s13412-022-00800-x>.
Computation of the International Roughness Index (IRI) given a longitudinal road profile. The IRI can be calculated for a single road segment or for a sequence of segments with a fixed length (e. g. 100m). For the latter, an overlap of the segments can be selected. The IRI and likewise the algorithms for its determination are defined in Sayers, Michael W; Gillespie, Thomas D; Queiroz, Cesar A.V. 1986. The International Road Roughness Experiment (IRRE) : establishing correlation and a calibration standard for measurements. World Bank technical paper; no. WTP 45. Washington, DC : The World Bank. (ISBN 0-8213-0589-1) available from <http://documents.worldbank.org/curated/en/326081468740204115>.
Assists in the whole process of designing and evaluating Randomized Control Trials. Robust treatment assignment by strata/blocks, that handles misfits; Power calculations of the minimum detectable treatment effect or minimum populations; Balance tables of T-test of covariates; Balance Regression: (treatment ~ all x variables) with F-test of null model; Impact_evaluation: Impact evaluation regressions. This function gives you the option to include control_vars, fixed effect variables, cluster variables (for robust SE), multiple endogenous variables and multiple heterogeneous variables (to test treatment effect heterogeneity) summary_statistics: Function that creates a summary statistics table with statistics rank observations in n groups: Creates a factor variable with n groups. Each group has a min and max label attach to each category. Athey, Susan, and Guido W. Imbens (2017) <arXiv:1607.00698>.
This package provides functions to perform propensity score matching on rolling entry interventions for which a suitable "entry" date is not observed for nonparticipants. For more details, please reference Witman et al. (2018) <doi:10.1111/1475-6773.13086>.
MCFS-ID (Monte Carlo Feature Selection and Interdependency Discovery) is a Monte Carlo method-based tool for feature selection. It also allows for the discovery of interdependencies between the relevant features. MCFS-ID is particularly suitable for the analysis of high-dimensional, small n large p transactional and biological data. M. Draminski, J. Koronacki (2018) <doi:10.18637/jss.v085.i12>.
Rcmdr Plugin for the FactoMineR package.
This package provides environment modules functionality, which enables use of the Environment Modules system (<http://modules.sourceforge.net/>) from within the R environment. By default the user's login shell environment (ie. "bash -l") will be used to initialize the current session. The module function can also; load or unload specific software, list all the loaded software within the current session, and list all the applications available for loading from the module system. Lastly, the module function can remove all loaded software from the current session.
Makes easier the creation of R package or research compendium (i.e. a predefined files/folders structure) so that users can focus on the code/analysis instead of wasting time organizing files. A full ready-to-work structure is set up with some additional features: version control, remote repository creation, CI/CD configuration (check package integrity under several OS, test code with testthat', and build and deploy website using pkgdown'). This package heavily relies on the R packages devtools and usethis and follows recommendations made by Wickham H. (2015) <ISBN:9781491910597> and Marwick B. et al. (2018) <doi:10.7287/peerj.preprints.3192v2>.
Convert a string of text characters to Elder Futhark Runes <https://en.wikipedia.org/wiki/Elder_Futhark>.