Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Implementation of a model-based clustering algorithm for ranking data (C. Biernacki, J. Jacques (2013) <doi:10.1016/j.csda.2012.08.008>). Multivariate rankings as well as partial rankings are taken into account. This algorithm is based on an extension of the Insertion Sorting Rank (ISR) model for ranking data, which is a meaningful and effective model parametrized by a position parameter (the modal ranking, quoted by mu) and a dispersion parameter (quoted by pi). The heterogeneity of the rank population is modelled by a mixture of ISR, whereas conditional independence assumption is considered for multivariate rankings.
Various statistical and mathematical ranking and rating methods with incomplete information are included. This package is initially designed for the scoring system in a high school project showcase to rank student research projects, where each judge can only evaluate a set of projects in a limited time period. See Langville, A. N. and Meyer, C. D. (2012), Who is Number 1: The Science of Rating and Ranking, Princeton University Press <doi:10.1515/9781400841677>, and Gou, J. and Wu, S. (2020), A Judging System for Project Showcase: Rating and Ranking with Incomplete Information, Technical Report.
This package implements the pseudo-R2D2 prior for ordinal regression from the paper "Psuedo-R2D2 prior for high-dimensional ordinal regression" by Yanchenko (2025) <doi:10.48550/arXiv.2502.17491>. In particular, it provides code to evaluate the probability distribution function for the cut-points, compute the log-likelihood, calculate the hyper-parameters for the global variance parameter, find the distribution of McFadden's coefficient-of-determination, and fit the model in rstan'. Please cite the paper if you use these codes.
This package provides a Bayesian credible interval is interpreted with respect to posterior probability, and this interpretation is far more intuitive than that of a frequentist confidence interval. However, standard highest-density intervals can be wide due to between-subjects variability and tends to hide within-subject effects, rendering its relationship with the Bayes factor less clear in within-subject (repeated-measures) designs. This urgent issue can be addressed by using within-subject intervals in within-subject designs, which integrate four methods including the Wei-Nathoo-Masson (2023) <doi:10.3758/s13423-023-02295-1>, the Loftus-Masson (1994) <doi:10.3758/BF03210951>, the Nathoo-Kilshaw-Masson (2018) <doi:10.1016/j.jmp.2018.07.005>, and the Heck (2019) <doi:10.31234/osf.io/whp8t> interval estimates.
Kiefer-Wolfowitz maximum likelihood estimation for mixture models and some other density estimation and regression methods based on convex optimization. See Koenker and Gu (2017) REBayes: An R Package for Empirical Bayes Mixture Methods, Journal of Statistical Software, 82, 1--26, <DOI:10.18637/jss.v082.i08>.
Non-inferiority test and diagnostic test are very important in clinical trails. This package is to get a p value from the non-inferiority test for ROC curves from diagnostic test.
This package performs joint selection in Generalized Linear Mixed Models (GLMMs) using penalized likelihood methods. Specifically, the Penalized Quasi-Likelihood (PQL) is used as a loss function, and penalties are then augmented to perform simultaneous fixed and random effects selection. Regularized PQL avoids the need for integration (or approximations such as the Laplace's method) during the estimation process, and so the full solution path for model selection can be constructed relatively quickly.
PADRINO houses textual representations of Integral Projection Models which can be converted from their table format into full kernels to reproduce or extend an already published analysis. Rpadrino is an R interface to this database. For more information on Integral Projection Models, see Easterling et al. (2000) <doi:10.1890/0012-9658(2000)081[0694:SSSAAN]2.0.CO;2>, Merow et al. (2013) <doi:10.1111/2041-210X.12146>, Rees et al. (2014) <doi:10.1111/1365-2656.12178>, and Metcalf et al. (2015) <doi:10.1111/2041-210X.12405>. See Levin et al. (2021) for more information on ipmr', the engine that powers model reconstruction <doi:10.1111/2041-210X.13683>.
An implementation of the WOFOST ("World Food Studies") crop growth model. WOFOST is a dynamic simulation model that uses daily weather data, and crop, soil and management parameters to simulate crop growth and development. See De Wit et al. (2019) <doi:10.1016/j.agsy.2018.06.018> for a recent review of the history and use of the model.
Computes the influence functions time series of the returns for the risk and performance measures as mentioned in Chen and Martin (2018) <https://www.ssrn.com/abstract=3085672>, as well as in Zhang et al. (2019) <https://www.ssrn.com/abstract=3415903>. Also evaluates estimators influence functions at a set of parameter values and plots them to display the shapes of the influence functions.
An R interface to the SYMPHONY solver for mixed-integer linear programs.
The goal of Rthingsboard is to provide interaction with the API of ThingsBoard (<https://thingsboard.io/>), an open-source IoT platform for device management, data collection, processing and visualization.
Create doxygen documentation for source code in R packages. Includes a RStudio Addin, that allows to trigger the doxygenize process.
Construct an explainable nomogram for a machine learning (ML) model to improve availability of an ML prediction model in addition to a computer application, particularly in a situation where a computer, a mobile phone, an internet connection, or the application accessibility are unreliable. This package enables a nomogram creation for any ML prediction models, which is conventionally limited to only a linear/logistic regression model. This nomogram may indicate the explainability value per feature, e.g., the Shapley additive explanation value, for each individual. However, this package only allows a nomogram creation for a model using categorical without or with single numerical predictors. Detailed methodologies and examples are documented in our vignette, available at <https://htmlpreview.github.io/?https://github.com/herdiantrisufriyana/rmlnomogram/blob/master/doc/ml_nomogram_exemplar.html>.
We provide functions to perform an empirical small telescopes analysis. This package contains 2 functions, SmallTelescopes() and EstimatePower(). Users only need to call SmallTelescopes() to conduct the analysis. For more information on small telescopes analysis see Uri Simonsohn (2015) <doi:10.1177/0956797614567341>.
Fits an Ising model to a binary dataset using L1 regularized logistic regression and extended BIC. Also includes a fast lasso logistic regression function for high-dimensional problems. Uses the libLBFGS optimization library by Naoaki Okazaki.
This package provides functions to facilitate inference on the relative importance of predictors in a linear or generalized linear model, and a couple of useful Tcl/Tk widgets.
Aggregates multiple Receiver Operating Characteristic (ROC) curves obtained from different sources into one global ROC. Additionally, itâ s also possible to calculate the aggregated precision-recall (PR) curve.
Simplify the process of extracting and processing Clinical Practice Research Datalink (CPRD) data in order to build datasets ready for statistical analysis. This process is difficult in R', as the raw data is very large and cannot be read into the R workspace. rcprd utilises RSQLite to create SQLite databases which are stored on the hard disk. These are then queried to extract the required information for a cohort of interest, and create datasets ready for statistical analysis. The processes follow closely that from the rEHR package, see Springate et al., (2017) <doi:10.1371/journal.pone.0171784>.
Generates random walks of various types by providing a set of functions that are compatible with the tidyverse'. The functions provided in the package make it simple to create random walks with a variety of properties, such as how many simulations to run, how many steps to take, and the distribution of random walk itself.
This package provides functions to safely map from a vector of keys to a vector of values, determine properties of a given relation, or ensure a relation conforms to a given type, such as many-to-many, one-to-many, injective, surjective, or bijective. Permits default return values for use similar to a vectorised switch statement, as well as safely handling large vectors, NAs, and duplicate mappings.
This package provides reference classes implementing some useful data structures. The package implements these data structures by using the reference class R6. Therefore, the classes of the data structures are also reference classes which means that their instances are passed by reference. The implemented data structures include stack, queue, double-ended queue, doubly linked list, set, dictionary and binary search tree. See for example <https://en.wikipedia.org/wiki/Data_structure> for more information about the data structures.
Building interactive web applications with R is incredibly easy with shiny'. Behind the scenes, shiny builds a reactive graph that can quickly become intertwined and difficult to debug. reactlog (Schloerke 2019) <doi:10.5281/zenodo.2591517> provides a visual insight into that black box of shiny reactivity by constructing a directed dependency graph of the application's reactive state at any time point in a reactive recording.
This package implements standard and reference based multiple imputation methods for continuous longitudinal endpoints (Gower-Page et al. (2022) <doi:10.21105/joss.04251>). In particular, this package supports deterministic conditional mean imputation and jackknifing as described in Wolbers et al. (2022) <doi:10.1002/pst.2234>, Bayesian multiple imputation as described in Carpenter et al. (2013) <doi:10.1080/10543406.2013.834911>, and bootstrapped maximum likelihood imputation as described in von Hippel and Bartlett (2021) <doi: 10.1214/20-STS793>.