Calculate point estimates of and valid confidence intervals for nonparametric, algorithm-agnostic variable importance measures in high and low dimensions, using flexible estimators of the underlying regression functions. For more information about the methods, please see Williamson et al. (Biometrics, 2020), Williamson et al. (JASA, 2021), and Williamson and Feng (ICML, 2020).
This package provides a multivariate inferential analysis method for detecting differentially expressed genes in gene expression data. It uses artificial components, close to the data's principal components but with an exact interpretation in terms of differential genetic expression, to identify differentially expressed genes while controlling the false discovery rate (FDR).
This package fits models for genotypic disequilibria, as described in Huttley and Wilson (2000), Weir (1996) and Weir and Wilson (1986). Contrast terms are available that account for first order interactions between loci. It also implements, for a single locus in a single population, a conditional exact test for Hardy-Weinberg equilibrium.
This package provides an efficient algorithm for solving ultra-sparse regularized regression models using a variational Bayes algorithm with a spike prior. The algorithm is solved on a path, with coordinate updates, and is capable of generating very sparse models. Very general model diagnostics for controlling type-1 errors are also provided.
Interface for multiple data sources, such as the `EDDS` API <https://evds2.tcmb.gov.tr/index.php?/evds/userDocs>
of the Central Bank of the Republic of Türkiye and the `FRED` API <https://fred.stlouisfed.org/docs/api/fred/> of the Federal Reserve Bank. Both data providers require API keys for access, which users can easily obtain by creating accounts on their respective websites. The package provides caching ability with the selection of periods to increase the speed and efficiency of requests. It combines datasets requested from different sources, helping users when the data has common frequencies. While combining data frames whenever possible, it also keeps all requested data available as separate data frames to increase efficiency.
This package provides a (not yet exhaustive) collection of common models of risk processes in actuarial science, represented as formal S4 classes. Each class (risk model) has a simulator of its path, and a plotting function. Further, a Monte-Carlo estimator of a ruin probability for a finite time is implemented, using a parallel computation. Currently, the package extends two classical risk models Cramer-Lundberg and Sparre Andersen models by including capital injections, that are positive jumps (see Breuer L. and Badescu A.L. (2014) <doi:10.1080/03461238.2011.636969>). The intent of the package is to provide a user-friendly interface for ruin processes simulators, as well as a solid and extensible structure for future extensions.
This package provides a novel clustering algorithm and toolkit RCSL (Rank Constrained Similarity Learning) to accurately identify various cell types using scRNA-seq
data from a complex tissue. RCSL considers both lo-cal similarity and global similarity among the cells to discern the subtle differences among cells of the same type as well as larger differences among cells of different types. RCSL uses Spearman’s rank correlations of a cell’s expression vector with those of other cells to measure its global similar-ity, and adaptively learns neighbour representation of a cell as its local similarity. The overall similar-ity of a cell to other cells is a linear combination of its global similarity and local similarity.
This package contains some tools for testing, analyzing time series data and fitting popular time series models such as ARIMA, Moving Average and Holt Winters, etc. Most functions also provide nice and clear outputs like SAS does, such as identify, estimate and forecast, which are the same statements in PROC ARIMA in SAS.
An all-encompassing R toolkit designed to streamline the process of calling various bioinformatics software and then performing data analysis and visualization in R. With blit', users can easily integrate a wide array of bioinformatics command line tools into their workflows, leveraging the power of R for sophisticated data manipulation and graphical representation.
Learning the structure of graphical models from datasets with thousands of variables. More information about the research papers detailing the theory behind Chordalysis is available at <http://www.francois-petitjean.com/Research> (KDD 2016, SDM 2015, ICDM 2014, ICDM 2013). The R package development site is <https://github.com/HerrmannM/Monash-ChoR>
.
Automatic differentiation is achieved by using dual numbers without providing hand-coded gradient functions. The output value of a mathematical function is returned with the values of its exact first derivative (or gradient). For more details see Baydin, Pearlmutter, Radul, and Siskind (2018) <https://jmlr.org/papers/volume18/17-468/17-468.pdf>.
Estimate common causal parameters using double/debiased machine learning as proposed by Chernozhukov et al. (2018) <doi:10.1111/ectj.12097>. ddml simplifies estimation based on (short-)stacking as discussed in Ahrens et al. (2024) <doi:10.1177/1536867X241233641>, which leverages multiple base learners to increase robustness to the underlying data generating process.
Efficient methods for computing distance covariance and relevant statistics. See Székely et al.(2007) <doi:10.1214/009053607000000505>; Székely and Rizzo (2013) <doi:10.1016/j.jmva.2013.02.012>; Székely and Rizzo (2014) <doi:10.1214/14-AOS1255>; Huo and Székely (2016) <doi:10.1080/00401706.2015.1054435>.
Interface for Rcpp users to dlib <http://dlib.net> which is a C++ toolkit containing machine learning algorithms and computer vision tools. It is used in a wide range of domains including robotics, embedded devices, mobile phones, and large high performance computing environments. This package allows R users to use dlib through Rcpp'.
This package provides a C++ API for routinely used numerical tools such as integration, root-finding, and optimization, where function arguments are given as lambdas. This facilitates Rcpp programming, enabling the development of R'-like code in C++ where functions can be defined on the fly and use variables in the surrounding environment.
Enhance R help system by fuzzy search and preview interface, pseudo-postfix operators, and more. The `?.` pseudo-postfix operator and the `?` prefix operator displays documents and contents (source or structure) of objects simultaneously to help understanding the objects. The `?p` pseudo-postfix operator displays package documents, and is shorter than help(package = foo).
GEE estimation of the parameters in mean structures with possible correlation between the outcomes. User-specified mean link and variance functions are allowed, along with observation weighting. The M in the name geeM
is meant to emphasize the use of the Matrix package, which allows for an implementation based fully in R.
Calculates the RMS intrinsic and parameter-effects curvatures of a nonlinear regression model. The curvatures are global measures of assessing whether a model/data set combination is close-to-linear or not. See Bates and Watts (1980) <doi:10.1002/9780470316757> and Ratkowsky and Reddy (2017) <doi:10.1093/aesa/saw098> for details.
Estimate the orientation of an inertial measurement unit (IMU) with a 3-axis accelerometer and a 3-axis gyroscope using a complementary filter. imuf takes an IMU's accelerometer and gyroscope readings, time duration, its initial orientation, and a gain factor as inputs, and returns an estimate of the IMU's final orientation.
Fitting multivariate data patterns with local principal curves, including tools for data compression (projection) and measuring goodness-of-fit; with some additional functions for mean shift clustering. See Einbeck, Tutz and Evers (2005) <doi:10.1007/s11222-005-4073-8> and Ameijeiras-Alonso and Einbeck (2023) <doi:10.1007/s11634-023-00575-1>.
By combining constant, linear, and quadratic local models, lazy estimates the value of an unknown multivariate function on the basis of a set of possibly noisy samples of the function itself. This implementation of lazy learning automatically adjusts the bandwidth on a query-by-query basis through a leave-one-out cross-validation.
It performs the followings Multivariate Process Capability Indices: Shahriari et al. (1995) Multivariate Capability Vector, Taam et al. (1993) Multivariate Capability Index (MCpm), Pan and Lee (2010) proposal (NMCpm) and the followings based on Principal Component Analysis (PCA):Wang and Chen (1998), Xekalaki and Perakis (2002) and Wang (2005). Two datasets are included.
Distance between multivariate generalised Gaussian distributions, as presented by N. Bouhlel and A. Dziri (2019) <doi:10.1109/LSP.2019.2915000>. Manipulation of multivariate generalised Gaussian distributions (methods presented by Gomez, Gomez-Villegas and Marin (1998) <doi:10.1080/03610929808832115> and Pascal, Bombrun, Tourneret and Berthoumieu (2013) <doi:10.1109/TSP.2013.2282909>).
Simulation and visualization of complex models for longitudinal data. The models are encoded using the model coding language Mlxtran and automatically converted into C++ codes. That allows one to implement very easily complex ODE-based models and complex statistical models, including mixed effects models, for continuous, count, categorical, and time-to-event data.