Efficient methods for computing distance covariance and relevant statistics. See Székely et al.(2007) <doi:10.1214/009053607000000505>; Székely and Rizzo (2013) <doi:10.1016/j.jmva.2013.02.012>; Székely and Rizzo (2014) <doi:10.1214/14-AOS1255>; Huo and Székely (2016) <doi:10.1080/00401706.2015.1054435>.
Automatic differentiation is achieved by using dual numbers without providing hand-coded gradient functions. The output value of a mathematical function is returned with the values of its exact first derivative (or gradient). For more details see Baydin, Pearlmutter, Radul, and Siskind (2018) <https://jmlr.org/papers/volume18/17-468/17-468.pdf>.
Enhance R help system by fuzzy search and preview interface, pseudo-postfix operators, and more. The `?.` pseudo-postfix operator and the `?` prefix operator displays documents and contents (source or structure) of objects simultaneously to help understanding the objects. The `?p` pseudo-postfix operator displays package documents, and is shorter than help(package = foo).
This package provides a C++ API for routinely used numerical tools such as integration, root-finding, and optimization, where function arguments are given as lambdas. This facilitates Rcpp programming, enabling the development of R'-like code in C++ where functions can be defined on the fly and use variables in the surrounding environment.
This package provides a light-weight, dependency-free, application programming interface (API) to access system-level Git <https://git-scm.com/downloads> commands from within R'. Contains wrappers and defaults for common data science workflows as well as Zsh <https://github.com/ohmyzsh/ohmyzsh> plugin aliases. A generalized API syntax is also available.
GEE estimation of the parameters in mean structures with possible correlation between the outcomes. User-specified mean link and variance functions are allowed, along with observation weighting. The M in the name geeM
is meant to emphasize the use of the Matrix package, which allows for an implementation based fully in R.
Calculates the RMS intrinsic and parameter-effects curvatures of a nonlinear regression model. The curvatures are global measures of assessing whether a model/data set combination is close-to-linear or not. See Bates and Watts (1980) <doi:10.1002/9780470316757> and Ratkowsky and Reddy (2017) <doi:10.1093/aesa/saw098> for details.
Estimate the orientation of an inertial measurement unit (IMU) with a 3-axis accelerometer and a 3-axis gyroscope using a complementary filter. imuf takes an IMU's accelerometer and gyroscope readings, time duration, its initial orientation, and a gain factor as inputs, and returns an estimate of the IMU's final orientation.
By combining constant, linear, and quadratic local models, lazy estimates the value of an unknown multivariate function on the basis of a set of possibly noisy samples of the function itself. This implementation of lazy learning automatically adjusts the bandwidth on a query-by-query basis through a leave-one-out cross-validation.
Fitting multivariate data patterns with local principal curves, including tools for data compression (projection) and measuring goodness-of-fit; with some additional functions for mean shift clustering. See Einbeck, Tutz and Evers (2005) <doi:10.1007/s11222-005-4073-8> and Ameijeiras-Alonso and Einbeck (2023) <doi:10.1007/s11634-023-00575-1>.
It performs the followings Multivariate Process Capability Indices: Shahriari et al. (1995) Multivariate Capability Vector, Taam et al. (1993) Multivariate Capability Index (MCpm), Pan and Lee (2010) proposal (NMCpm) and the followings based on Principal Component Analysis (PCA):Wang and Chen (1998), Xekalaki and Perakis (2002) and Wang (2005). Two datasets are included.
Simulation and visualization of complex models for longitudinal data. The models are encoded using the model coding language Mlxtran and automatically converted into C++ codes. That allows one to implement very easily complex ODE-based models and complex statistical models, including mixed effects models, for continuous, count, categorical, and time-to-event data.
Distance between multivariate generalised Gaussian distributions, as presented by N. Bouhlel and A. Dziri (2019) <doi:10.1109/LSP.2019.2915000>. Manipulation of multivariate generalised Gaussian distributions (methods presented by Gomez, Gomez-Villegas and Marin (1998) <doi:10.1080/03610929808832115> and Pascal, Bombrun, Tourneret and Berthoumieu (2013) <doi:10.1109/TSP.2013.2282909>).
Model mixed integer linear programs in an algebraic way directly in R. The model is solver-independent and thus offers the possibility to solve a model with different solvers. It currently only supports linear constraints and objective functions. See the ompr website <https://dirkschumacher.github.io/ompr/> for more information, documentation and examples.
This package performs partial principal component analysis of a large sparse matrix. The matrix may be stored as a list of matrices to be concatenated (implicitly) horizontally. Useful application includes cases where the number of total nonzero entries exceed the capacity of 32 bit integers (e.g., with large Single Nucleotide Polymorphism data).
This package provides functions to implement the stability controlled quasi-experiment (SCQE) approach to study the effects of newly adopted treatments that were not assigned at random. This package contains tools to help users avoid making statistical assumptions that rely on infeasible assumptions. Methods developed in Hazlett (2019) <doi:10.1002/sim.8717>.
Formulates a sparse distance weighted discrimination (SDWD) for high-dimensional classification and implements a very fast algorithm for computing its solution path with the L1, the elastic-net, and the adaptive elastic-net penalties. More details about the methodology SDWD is seen on Wang and Zou (2016) (<doi:10.1080/10618600.2015.1049700>).
This package creates a data specification that describes the columns of a table (data.frame). Provides methods to read, write, and update the specification. Checks whether a table matches its specification. See specification.data.frame(),read.spec()
, write.spec()
, as.csv.spec()
, respecify.character()
, and %matches%.data.frame()
.
An R shiny app designed for diverse text analysis tasks, offering a wide range of methodologies tailored to Natural Language Processing (NLP) needs. It is a versatile, general-purpose tool for analyzing textual data. tall features a comprehensive workflow, including data cleaning, preprocessing, statistical analysis, and visualization, all integrated for effective text analysis.
This package provides a fast dimensionality reduction method scalable to large numbers of samples. Landmark Multi-Dimensional Scaling (LMDS) is an extension of classical Torgerson MDS, but rather than calculating a complete distance matrix between all pairs of samples, only the distances between a set of landmarks and the samples are calculated.
Interface for multiple data sources, such as the `EDDS` API <https://evds2.tcmb.gov.tr/index.php?/evds/userDocs>
of the Central Bank of the Republic of Türkiye and the `FRED` API <https://fred.stlouisfed.org/docs/api/fred/> of the Federal Reserve Bank. Both data providers require API keys for access, which users can easily obtain by creating accounts on their respective websites. The package provides caching ability with the selection of periods to increase the speed and efficiency of requests. It combines datasets requested from different sources, helping users when the data has common frequencies. While combining data frames whenever possible, it also keeps all requested data available as separate data frames to increase efficiency.
This package provides a (not yet exhaustive) collection of common models of risk processes in actuarial science, represented as formal S4 classes. Each class (risk model) has a simulator of its path, and a plotting function. Further, a Monte-Carlo estimator of a ruin probability for a finite time is implemented, using a parallel computation. Currently, the package extends two classical risk models Cramer-Lundberg and Sparre Andersen models by including capital injections, that are positive jumps (see Breuer L. and Badescu A.L. (2014) <doi:10.1080/03461238.2011.636969>). The intent of the package is to provide a user-friendly interface for ruin processes simulators, as well as a solid and extensible structure for future extensions.
This package provides a novel clustering algorithm and toolkit RCSL (Rank Constrained Similarity Learning) to accurately identify various cell types using scRNA-seq
data from a complex tissue. RCSL considers both lo-cal similarity and global similarity among the cells to discern the subtle differences among cells of the same type as well as larger differences among cells of different types. RCSL uses Spearman’s rank correlations of a cell’s expression vector with those of other cells to measure its global similar-ity, and adaptively learns neighbour representation of a cell as its local similarity. The overall similar-ity of a cell to other cells is a linear combination of its global similarity and local similarity.
Frequentist sequential meta-analysis based on Trial Sequential Analysis (TSA) in programmed in Java by the Copenhagen Trial Unit (CTU). The primary function is the calculation of group sequential designs for meta-analysis to be used for planning and analysis of both prospective and retrospective sequential meta-analyses to preserve type-I-error control under sequential testing. RTSA includes tools for sample size and trial size calculation for meta-analysis and core meta-analyses methods such as fixed-effect and random-effects models and forest plots. TSA is described in Wetterslev et. al (2008) <doi:10.1016/j.jclinepi.2007.03.013>. The methods for deriving the group sequential designs are based on Jennison and Turnbull (1999, ISBN:9780849303166).