Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Root Expected Proportion Squared Difference (REPSD) is a nonparametric differential item functioning (DIF) method that (a) allows practitioners to explore for DIF related to small, fine-grained focal groups of examinees, and (b) compares the focal group directly to the composite group that will be used to develop the reported test score scale. Using your provided response matrix with a column that identifies focal group membership, this package provides the REPSD values, a simulated null distribution of possible REPSD values, and the simulated p-values identifying items possibly displaying DIF without requiring enormous sample sizes.
Fits the robust Bayesian Copas (RBC) selection model of Bai et al. (2020) <arXiv:2005.02930> for correcting and quantifying publication bias in univariate meta-analysis. Also fits standard random effects meta-analysis and the Copas-like selection model of Ning et al. (2017) <doi:10.1093/biostatistics/kxx004>.
Clinical care data from 130 U.S. hospitals in the years 1999-2008 adapted from the study Strack et al. (2014) <doi:10.1155/2014/781670>. Each row describes an "encounter" with a patient with diabetes, including variables on demographics, medications, patient history, diagnostics, payment, and readmission.
Efficient algorithms for generating ensembles of robust, sparse and diverse models via robust multi-model subset selection (RMSS). The robust ensembles are generated by minimizing the sum of the least trimmed square loss of the models in the ensembles under constraints for the size of the models and the sharing of the predictors. Tuning parameters for the robustness, sparsity and diversity of the robust ensemble are selected by cross-validation.
Use trend filtering, a type of regularized nonparametric regression, to estimate the instantaneous reproduction number, also called Rt. This value roughly says how many new infections will result from each new infection today. Values larger than 1 indicate that an epidemic is growing while those less than 1 indicate decline. For more details about this methodology, see Liu, Cai, Gustafson, and McDonald (2024) <doi:10.1371/journal.pcbi.1012324>.
This package contains the function run.eqs() which calls an EQS script file, executes the EQS estimation, and, finally, imports the results as R objects. These two steps can be performed separately: call.eqs() calls and executes EQS, whereas read.eqs() imports existing EQS outputs as objects into R. It requires EQS 6.2 (build 98 or higher).
This package provides a toolkit for the analysis of paths from spatial tracking experiments and calculation of goal-finding strategies. This package is centered on an approach using machine learning for path classification.
This package implements the hierarchical Bayesian analysis of populations structure (hierBAPS) algorithm of Cheng et al. (2013) <doi:10.1093/molbev/mst028> for clustering DNA sequences from multiple sequence alignments in FASTA format. The implementation includes improved defaults and plotting capabilities and unlike the original MATLAB version removes singleton SNPs by default.
This package provides a robust alternative to the aJIVE (angle based Joint and Individual Variation Explained) method (Feng et al 2018: <doi:10.1016/j.jmva.2018.03.008>) for the estimation of joint and individual components in the presence of outliers in multi-source data. It decomposes the multi-source data into joint, individual and residual (noise) contributions. The decomposition is robust to outliers and noise in the data. The method is illustrated in Ponzi et al (2021) <arXiv:2101.09110>.
This package provides functions to perform propensity score matching on rolling entry interventions for which a suitable "entry" date is not observed for nonparticipants. For more details, please reference Witman et al. (2018) <doi:10.1111/1475-6773.13086>.
Enhances the R Optimization Infrastructure ('ROI') package with a connection to the neos server. ROI optimization problems can be directly be sent to the neos server and solution obtained in the typical ROI style.
This package provides a novel ensemble method employing Support Vector Machines (SVMs) as base learners. This powerful ensemble model is designed for both classification (Ara A., et. al, 2021) <doi:10.6339/21-JDS1014>, and regression (Ara A., et. al, 2021) <doi:10.1016/j.eswa.2022.117107> problems, offering versatility and robust performance across different datasets and compared with other consolidated methods as Random Forests (Maia M, et. al, 2021) <doi:10.6339/21-JDS1025>.
Generates polygon straight skeletons and 3D models. Provides functions to create and visualize interior polygon offsets, 3D beveled polygons, and 3D roof models.
Functionality for performing a principled reference analysis in the Bayesian normal-normal hierarchical model used for Bayesian meta-analysis, as described in Ott, Plummer and Roos (2021) <doi:10.1002/sim.9076>. Computes a reference posterior, induced by a minimally informative improper reference prior for the between-study (heterogeneity) standard deviation. Determines additional proper anti-conservative (and conservative) prior benchmarks. Includes functions for reference analyses at both the posterior and the prior level, which, given the data, quantify the informativeness of a heterogeneity prior of interest relative to the minimally informative reference prior and the proper prior benchmarks. The functions operate on data sets which are compatible with the bayesmeta package.
IUCN Red List (<https://api.iucnredlist.org/>) client. The IUCN Red List is a global list of threatened and endangered species. Functions cover all of the Red List API routes. An API key is required.
Listings are often part of the submission of clinical trial data in regulatory settings. We provide a framework for the specific formatting features often used when displaying large datasets in that context.
Supports analysis of spatial data processed with the GeoPAT 2 software <https://github.com/Nowosad/geopat2>. Available features include creation of a grid based on the GeoPAT 2 grid header file and reading a GeoPAT 2 text outputs.
This package provides subsets with reference semantics, i.e. subsets which automatically reflect changes in the original object, and which optionally update the original object when they are changed.
An interface to the software package MARK that constructs input files for MARK and extracts the output. MARK was developed by Gary White and is freely available at <http://www.phidot.org/software/mark/downloads/> but is not open source.
Goldwin-Pierre correlogram. Research of critical periods in the past. Integrates a time series in a given window.
Extracts tagged text from markdown manuscripts for inclusion in dynamically generated revision letters. Provides an R markdown template based on papaja::revision_letter_pdf() with comment cross-referencing, a system for managing multiple sections of extracted text, and a way to automatically determine the page number of quoted sections from PDF manuscripts.
Fast and efficient computation of rolling and expanding statistics for time-series data.
Set of utilities to facilitate the reproduction of analysis in R. It allow to make_structure(), clean_structure(), and run and log programs in a predefined order to allow secondary files, analysis and reports be constructed in an ordered and reproducible form.
This package provides a fast calculation of the Blyth-Still-Casella confidence interval. The implementation follows the StatXact 9 manual (Cytel 2010) and "Refining Binomial Confidence Intervals" by George Casella (1986) <doi:10.2307/3314658>.