Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The cartogram heatmaps generated by the included methods are an alternative to choropleth maps for the United States and are based on work by the Washington Post graphics department in their report on "The states most threatened by trade" (<http://www.washingtonpost.com/wp-srv/special/business/states-most-threatened-by-trade/>). "State bins" preserve as much of the geographic placement of the states as possible but have the look and feel of a traditional heatmap. Functions are provided that allow for use of a binned, discrete scale, a continuous scale or manually specified colors depending on what is needed for the underlying data.
Pass named and unnamed character vectors into specified positions in strings. This represents an attempt to replicate some of python's string formatting.
This package provides a toolkit for Partially Observed Markov Decision Processes (POMDP). Provides bindings to C++ libraries implementing the algorithm SARSOP (Successive Approximations of the Reachable Space under Optimal Policies) and described in Kurniawati et al (2008), <doi:10.15607/RSS.2008.IV.009>. This package also provides a high-level interface for generating, solving and simulating POMDP problems and their solutions.
This package provides a dynamic programming solution to segmentation based on maximization of arbitrary similarity measures within segments. The general idea, theory and this implementation are described in Machne, Murray & Stadler (2017) <doi:10.1038/s41598-017-12401-8>. In addition to the core algorithm, the package provides time-series processing and clustering functions as described in the publication. These are generally applicable where a `k-means` clustering yields meaningful results, and have been specifically developed for clustering of the Discrete Fourier Transform of periodic gene expression data (`circadian or `yeast metabolic oscillations'). This clustering approach is outlined in the supplemental material of Machne & Murray (2012) <doi:10.1371/journal.pone.0037906>), and here is used as a basis of segment similarity measures. Notably, the time-series processing and clustering functions can also be used as stand-alone tools, independent of segmentation, e.g., for transcriptome data already mapped to genes.
Parametric survival regression models under the maximum likelihood approach via Stan'. Implemented regression models include accelerated failure time models, proportional hazards models, proportional odds models, accelerated hazard models, Yang and Prentice models, and extended hazard models. Available baseline survival distributions include exponential, Weibull, log-normal, log-logistic, gamma, generalized gamma, rayleigh, Gompertz and fatigue (Birnbaum-Saunders) distributions. References: Lawless (2002) <ISBN:9780471372158>; Bennett (1982) <doi:10.1002/sim.4780020223>; Chen and Wang(2000) <doi:10.1080/01621459.2000.10474236>; Demarqui and Mayrink (2021) <doi:10.1214/20-BJPS471>.
An outcome-guided algorithm is developed to identify clusters of samples with similar characteristics and survival rate. The algorithm first builds a random forest and then defines distances between samples based on the fitted random forest. Given the distances, we can apply hierarchical clustering algorithms to define clusters. Details about this method is described in <https://github.com/luyouepiusf/SurvivalClusteringTree>.
Algorithms for fitting scaled sparse linear regression and estimating precision matrices.
This package provides gene signature quality control metrics in publication ready plots. Namely, enables the visualization of properties such as expression, variability, correlation, and comparison of methods of standardisation and scoring metrics.
Analysis of seed germination data using the physiological time modelling approach. Includes functions to fit hydrotime and thermal-time models with the traditional approaches of Bradford (1990) <doi:10.1104/pp.94.2.840> and Garcia-Huidobro (1982) <doi:10.1093/jxb/33.2.288>. Allows to fit models to grouped datasets, i.e. datasets containing multiple species, seedlots or experiments.
This package provides functions for computing a standardized moderation effect in moderated regression and forming its confidence interval by nonparametric bootstrapping as proposed in Cheung, Cheung, Lau, Hui, and Vong (2022) <doi:10.1037/hea0001188>. Also includes simple-to-use functions for computing conditional effects (unstandardized or standardized) and plotting moderation effects.
Efficient variational inference methods for fully Bayesian Gaussian Process Regression (GPR) models with hierarchical shrinkage priors, including the triple gamma prior for effective variable selection and covariance shrinkage in high-dimensional settings. The package leverages normalizing flows to approximate complex posterior distributions. For details on implementation, see Knaus (2025) <doi:10.48550/arXiv.2501.13173>.
Survey to collect data about the social and economic conditions of Indonesian society. This activity aims to include: As a data source for planning and evaluating national, sectoral development programs, and providing indicators for Sustainable Development Goals (TPB), National Medium Term Development Plan (RPJMN), and Nawacita, GDP/GRDP and annual Integrated Institutional Balance Sheet.
Create a hexagon tile map display from spatial polygons. Each polygon is represented by a hexagon tile, placed as close to it's original centroid as possible, with a focus on maintaining spatial relationship to a focal point. Developed to aid visualisation and analysis of spatial distributions across Australia, which can be challenging due to the concentration of the population on the coast and wide open interior.
Data used in Taback, N. (2022). Design and Analysis of Experiments and Observational Studies using R. Chapman & Hall/CRC.
Social network analysis is becoming commonplace in many social science disciplines, but access to useful network data, especially among marginalized populations, still remains a formidable challenge. This package mitigates that problem by providing tools to simulate spatial Bernoulli networks as proposed in Carter T. Butts (2002, ISBN:978-0-493-72676-2), "Spatial models of large-scale interpersonal networks." Using this package, network analysts can simulate a spatial point process or sequence with a given number of nodes inside a geographical boundary and estimate the probability of a tie formation between all node pairs. When simulating a network, an analyst can choose between five spatial interaction functions. The package also enables quick comparison of summary statistics for simulated networks and provides simple to use plotting methods for its classes that return plots which can be further refined with the ggplot2 package.
For surface energy models and estimation of solar positions and components with varying topography, time and locations. The functions calculate solar top-of-atmosphere, open, diffuse and direct components, atmospheric transmittance and diffuse factors, day length, sunrise and sunset, solar azimuth, zenith, altitude, incidence, and hour angles, earth declination angle, equation of time, and solar constant. Details about the methods and equations are explained in Seyednasrollah, Bijan, Mukesh Kumar, and Timothy E. Link. On the role of vegetation density on net snow cover radiation at the forest floor. Journal of Geophysical Research: Atmospheres 118.15 (2013): 8359-8374, <doi:10.1002/jgrd.50575>.
This package provides a Shiny app including the Monaco editor. The Monaco editor is the code editor which powers VS Code'. It is particularly well developed for JavaScript'. In addition to the Monaco editor features, the app provides prettifiers and minifiers for multiple languages, SCSS and TypeScript compilers, code checking for C and C++ (requires cppcheck').
With given inputs that include number of points, discrete design space, a measure of skewness, models and parameter value, this package calculates the objective value, optimal designs and plot the equivalence theory under A- and D-optimal criteria under the second-order Least squares estimator. This package is based on the paper "Properties of optimal regression designs under the second-order least squares estimator" by Chi-Kuang Yeh and Julie Zhou (2021) <doi:10.1007/s00362-018-01076-6>.
An implementation of popular evaluation metrics that are commonly used in survival prediction including Concordance Index, Brier Score, Integrated Brier Score, Integrated Square Error, Integrated Absolute Error and Mean Absolute Error. For a detailed information, see (Ishwaran H, Kogalur UB, Blackstone EH and Lauer MS (2008) <doi:10.1214/08-AOAS169>) , (Moradian H, Larocque D and Bellavance F (2017) <doi:10.1007/s10985-016-9372-1>), (Hanpu Zhou, Hong Wang, Sizheng Wang and Yi Zou (2023) <doi:10.32614/rj-2023-009>) for different evaluation metrics.
Print function signatures and find overly complicated code.
This package provides function for small area estimation at area level using averaging pseudo area level model for variables of interest. A dataset produced by data generation is also provided. This package estimates small areas at the village level and then aggregates them to the sub-district, region, and provincial levels.
This package provides functions for creating, displaying, and evaluating stopping rules for safety monitoring in clinical studies.
This package implements several functions that automates the cleaning and spell-checking of text data. Also converges, finalizes, removes plurals and continuous strings, and puts text data in binary format for semantic network analysis. Uses the SemNetDictionaries package to make the cleaning process more accurate, efficient, and reproducible.
This package provides a set of tools inspired by Stata to explore data.frames ('summarize', tabulate', xtile', pctile', binscatter', elapsed quarters/month, lead/lag).