Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Interface for creation of slp class smoother objects for use in Generalized Additive Models (as implemented by packages gam and mgcv').
Calculating daily global solar radiation at horizontal surface using several well-known models (i.e. Angstrom-Prescott, Supit-Van Kappel, Hargreaves, Bristow and Campbell, and Mahmood-Hubbard), and model calibration based on ground-truth data, and (3) model auto-calibration. The FAO Penmann-Monteith equation to calculate evapotranspiration is also included.
This package provides a set of functions for computing potential evapotranspiration and several widely used drought indices including the Standardized Precipitation-Evapotranspiration Index (SPEI).
This package provides a computational framework for analyzing mutations in immunoglobulin (Ig) sequences. Includes methods for Bayesian estimation of antigen-driven selection pressure, mutational load quantification, building of somatic hypermutation (SHM) models, and model-dependent distance calculations. Also includes empirically derived models of SHM for both mice and humans. Citations: Gupta and Vander Heiden, et al (2015) <doi:10.1093/bioinformatics/btv359>, Yaari, et al (2012) <doi:10.1093/nar/gks457>, Yaari, et al (2013) <doi:10.3389/fimmu.2013.00358>, Cui, et al (2016) <doi:10.4049/jimmunol.1502263>.
This package provides significance controlled variable selection algorithms with different directions (forward, backward, stepwise) based on diverse criteria (AIC, BIC, adjusted r-square, PRESS, or p-value). The algorithm selects a final model with only significant variables defined as those with significant p-values after multiple testing correction such as Bonferroni, False Discovery Rate, etc. See Zambom and Kim (2018) <doi:10.1002/sta4.210>.
This package provides a pilot matching design to automatically stratify and match large datasets. The manual_stratify() function allows users to manually stratify a dataset based on categorical variables of interest, while the auto_stratify() function does automatically by allocating a held-aside (pilot) data set, fitting a prognostic score (see Hansen (2008) <doi:10.1093/biomet/asn004>) on the pilot set, and stratifying the data set based on prognostic score quantiles. The strata_match() function then does optimal matching of the data set in parallel within strata.
Proposes an original instrument for measuring stakeholder influence on the development of an infrastructure project that is carried through by a municipality, drawing on stakeholder classifications (Mitchell, Agle, & Wood, 1997) and input-output modelling (Hester & Adams, 2013). Mitchell R., Agle B.R., & Wood D.J. <doi:10.2307/259247> Hester, P.T., & Adams, K.M. (2013) <doi:10.1016/j.procs.2013.09.282>.
Implementation of the structural model for variances in order to detect differentially expressed genes from gene expression data.
This package implements the generalized semi-supervised elastic-net. This method extends the supervised elastic-net problem, and thus it is a practical solution to the problem of feature selection in semi-supervised contexts. Its mathematical formulation is presented from a general perspective, covering a wide range of models. We focus on linear and logistic responses, but the implementation could be easily extended to other losses in generalized linear models. We develop a flexible and fast implementation, written in C++ using RcppArmadillo and integrated into R via Rcpp modules. See Culp, M. 2013 <doi:10.1080/10618600.2012.657139> for references on the Joint Trained Elastic-Net.
Mosaic diagram, scatterplot matrix, Andrews curves, parallel coordinate diagram, radar diagram, and Chernoff plots as a Shiny app, which allow the order of variables to be changed interactively. The apps are intended as teaching examples.
Single-Index Quantile Regression is effective in some scenarios. We provides functions that allow users to fit Single-Index Quantile Regression model. It also provides functions to do prediction, estimate standard errors of the single-index coefficients via bootstrap, and visualize the estimated univariate function. Please see W., Y., Y. (2010) <doi:10.1016/j.jmva.2010.02.003> for details.
This package provides an easy framework for Monte Carlo simulation in structural equation modeling, which can be used for various purposes, such as such as model fit evaluation, power analysis, or missing data handling and planning.
This package provides functions for retrieving general and specific data from the Norwegian Parliament, through the Norwegian Parliament API at <https://data.stortinget.no>.
In order to facilitate the adjustment of the sample selection models existing in the literature, we created the ssmodels package. Our package allows the adjustment of the classic Heckman model (Heckman (1976), Heckman (1979) <doi:10.2307/1912352>), and the estimation of the parameters of this model via the maximum likelihood method and two-step method, in addition to the adjustment of the Heckman-t models introduced in the literature by Marchenko and Genton (2012) <doi:10.1080/01621459.2012.656011> and the Heckman-Skew model introduced in the literature by Ogundimu and Hutton (2016) <doi:10.1111/sjos.12171>. We also implemented functions to adjust the generalized version of the Heckman model, introduced by Bastos, Barreto-Souza, and Genton (2021) <doi:10.5705/ss.202021.0068>, that allows the inclusion of covariables to the dispersion and correlation parameters, and a function to adjust the Heckman-BS model introduced by Bastos and Barreto-Souza (2020) <doi:10.1080/02664763.2020.1780570> that uses the Birnbaum-Saunders distribution as a joint distribution of the selection and primary regression variables. This package extends and complements existing R packages such as sampleSelection (Toomet and Henningsen, 2008) and ssmrob (Zhelonkin et al., 2016), providing additional robust and flexible sample selection models.
Remove batch effects by projecting query batches into the reference batch space.
An interface to the Python package stanza <https://stanfordnlp.github.io/stanza/index.html>. stanza is a Python NLP library for many human languages. It contains support for running various accurate natural language processing tools on 60+ languages.
This package provides a collection of statistical and geometrical tools including the aligned rank transform (ART; Higgins et al. 1990 <doi:10.4148/2475-7772.1443>; Peterson 2002 <doi:10.22237/jmasm/1020255240>; Wobbrock et al. 2011 <doi:10.1145/1978942.1978963>), 2-D histograms and histograms with overlapping bins, a function for making all possible formulae within a set of constraints, amongst others.
This package provides a coalescent simulator that allows the rapid simulation of biological sequences under neutral models of evolution, see Staab et al. (2015) <doi:10.1093/bioinformatics/btu861>. Different to other coalescent based simulations, it has an optional approximation parameter that allows for high accuracy while maintaining a linear run time cost for long sequences. It is optimized for simulating massive data sets as produced by Next- Generation Sequencing technologies for up to several thousand sequences.
Is designed to interactively and reproducibly visualize and filter SNP (single-nucleotide polymorphism) datasets. This R-based implementation of SNP and genotype filters facilitates an interactive and iterative SNP filtering pipeline, which can be documented reproducibly via rmarkdown'. SNPfiltR contains functions for visualizing various quality and missing data metrics for a SNP dataset, and then filtering the dataset based on user specified cutoffs. All functions take vcfR objects as input, which can easily be generated by reading standard vcf (variant call format) files into R using the R package vcfR authored by Knaus and Grünwald (2017) <doi:10.1111/1755-0998.12549>. Each SNPfiltR function can return a newly filtered vcfR object, which can then be written to a local directory in standard vcf format using the vcfR package, for downstream population genetic and phylogenetic analyses.
This package provides a non convex optimization package that optimizes any function under the criterion, combination of variables are on the surface of a unit sphere, as described in the paper : Das et al. (2019) <arXiv:1909.04024> .
This package provides functions to generate K-fold cross validation (CV) folds and CV test error estimates that take into account how a survey dataset's sampling design was constructed (SRS, clustering, stratification, and/or unequal sampling weights). You can input linear and logistic regression models, along with data and a type of survey design in order to get an output that can help you determine which model best fits the data using K-fold cross validation. Our paper on "K-Fold Cross-Validation for Complex Sample Surveys" by Wieczorek, Guerin, and McMahon (2022) <doi:10.1002/sta4.454> explains why differing how we take folds based on survey design is useful.
Spatial Stochastic Frontier Analysis (SSFA) is an original method for controlling the spatial heterogeneity in Stochastic Frontier Analysis (SFA) models, for cross-sectional data, by splitting the inefficiency term into three terms: the first one related to spatial peculiarities of the territory in which each single unit operates, the second one related to the specific production features and the third one representing the error term.
This package performs two-sample comparisons using the restricted mean survival time (RMST) as a summary measure of the survival time distribution. Three kinds of between-group contrast metrics (i.e., the difference in RMST, the ratio of RMST and the ratio of the restricted mean time lost (RMTL)) are computed. It performs an ANCOVA-type covariate adjustment as well as unadjusted analyses for those measures.
Routines for a collection of screen-and-clean type variable selection procedures, including UPS and GS.