Fits nonparametric item and option characteristic curves using kernel smoothing. It allows for optimal selection of the smoothing bandwidth using cross-validation and a variety of exploratory plotting tools. The kernel smoothing is based on methods described in Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis. Chapman & Hall, London.
This package implements non-parametric tests from Higgins (2004, ISBN:0534387756), including tests for one sample, two samples, k samples, paired comparisons, blocked designs, trends and association. Built with Rcpp for efficiency and R6 for flexible, object-oriented design, the package provides a unified framework for performing or creating custom permutation tests.
Common ecological distributions for nimble models in the form of nimbleFunction
objects. Includes Cormack-Jolly-Seber, occupancy, dynamic occupancy, hidden Markov, dynamic hidden Markov, and N-mixture models. (Jolly (1965) <DOI: 10.2307/2333826>, Seber (1965) <DOI: 10.2307/2333827>, Turek et al. (2016) <doi:10.1007/s10651-016-0353-z>).
This package contains a collection of helper functions for dealing with NetCDF
files <https://www.unidata.ucar.edu/software/netcdf/> opened using ncdf4', particularly NetCDF
files that conform to the Climate and Forecast (CF) Metadata Conventions <http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/cf-conventions.html>.
Generation of multiple count, binary and continuous variables simultaneously given the marginal characteristics and association structure. Throughout the package, the word Poisson is used to imply count data under the assumption of Poisson distribution. The details of the method are explained in Amatya et al. (2015) <DOI:10.1080/00949655.2014.953534>.
The package Fletcher2013a contains time-course gene expression data from MCF-7 cells treated under different experimental systems in order to perturb FGFR2 signalling. The data comes from Fletcher et al. (Nature Comms 4:2464, 2013) where further details about the background and the experimental design of the study can be found.
omicRexposome
systematizes the association evaluation between exposures and omic data, taking advantage of MultiDataSet
for coordinated data management, rexposome for exposome data definition and limma for association testing. Also to perform data integration mixing exposome and omic data using multi co-inherent analysis (omicade4) and multi-canonical correlation analysis (PMA).
This package adds the ability to run tests by filtering the test tree based on the result of a previous test run. You can use this to run only those tests that failed in the last run, or to only run the tests that have been added since previous test run.
Allows to generate on-demand or by batch, any R documentation file, whatever is kind, data, function, class or package. It populates documentation sections, either automatically or by considering your input. Input code could be standard R code or offensive programming code. Documentation content completeness depends on the type of code you use. With offensive programming code, expect generated documentation to be fully completed, from a format and content point of view. With some standard R code, you will have to activate post processing to fill-in any section that requires complements. Produced manual page validity is automatically tested against R documentation compliance rules. Documentation language proficiency, wording style, and phrasal adjustments remains your job.
This package implements a quantified approach to the Kraljic Matrix (Kraljic, 1983, <https://hbr.org/1983/09/purchasing-must-become-supply-management>) for strategically analyzing a firmâ s purchasing portfolio. It combines multi-objective decision analysis to measure purchasing characteristics and uses this information to place products and services within the Kraljic Matrix.
An RStudio addin to assist with removing objects from the global environment. Features include removing objects according to name patterns and object type. During the course of an analysis, temporary objects are often created and this tool assists with removing them quickly. This can be useful when memory management within R is important.
Implement the alternating algorithm for supervised tensor decomposition with interactive side information. Details can be found in the publication Hu, Jiaxin, Chanwoo Lee, and Miaoyan Wang. "Generalized Tensor Decomposition with features on multiple modes." Journal of Computational and Graphical Statistics, Vol. 31, No. 1, 204-218, 2022 <doi:10.1080/10618600.2021.1978471>.
The *MungeSumstats
* package is designed to facilitate the standardisation of GWAS summary statistics. It reformats inputted summary statisitics to include SNP, CHR, BP and can look up these values if any are missing. It also pefrorms dozens of QC and filtering steps to ensure high data quality and minimise inter-study differences.
QLTExperiment defines an S4 class for storing and manipulating summary statistics from QTL mapping experiments in one or more states. It is based on the SummarizedExperiment
class and contains functions for creating, merging, and subsetting objects. QTLExperiment also stores experiment metadata and has checks in place to ensure that transformations apply correctly.
The test-queue module is a parallel test runner, built using a centralized queue to ensure optimal distribution of tests between workers. It is specifically optimized for Continuous Integration (CI) environments: build statistics from each run are stored locally and used to sort the queue at the beginning of the next run.
Add-on to the airGR
package which provides the tools to assimilate observed discharges in daily GR hydrological models. The package consists in two functions allowing to perform the assimilation of observed discharges via the Ensemble Kalman filter or the Particle filter as described in Piazzi et al. (2021) <doi:10.1029/2020WR028390>.
If one treated group is matched to one control reservoir in two different ways to produce two sets of treated-control matched pairs, then the two control groups may be entwined, in the sense that some control individuals are in both control groups. The exterior match is used to compare the two control groups.
This package provides a collection of methods for the Bayesian estimation of Spatial Probit, Spatial Ordered Probit and Spatial Tobit Models. Original implementations from the works of LeSage
and Pace (2009, ISBN: 1420064258) were ported and adjusted for R, as described in Wilhelm and de Matos (2013) <doi:10.32614/RJ-2013-013>.
The Scott-Knott Effect Size Difference (ESD) test is a mean comparison approach that leverages a hierarchical clustering to partition the set of treatment means (e.g., means of variable importance scores, means of model performance) into statistically distinct groups with non-negligible difference [Tantithamthavorn et al., (2018) <doi:10.1109/TSE.2018.2794977>].
Implement a shrinkage estimation for the univariate normal mean based on a preliminary test (pretest) estimator. This package also provides the confidence interval based on pivoting the cumulative density function. The methodologies are published in Taketomi et al.(2024) <doi:10.1007/s42081-023-00221-2> and Taketomi et al.(2024-)(under review).
Implement in an efficient approach to display the genomic data, relationship, information in an interactive circular genome(Circos) plot. interacCircos
are inspired by circosJS
', BioCircos.js
and NG-Circos and we integrate the modules of circosJS
', BioCircos.js
and NG-Circos into this R package, based on htmlwidgets framework.
MetagenomeSeq is designed to determine features (be it OTU, species, etc.) that are differentially abundant between two or more groups of multiple samples. This package is designed to address the effects of both normalization and under-sampling of microbial communities on disease association detection and the testing of feature correlations.
This package provides a client for the Bioconductor ExperimentHub web resource. ExperimentHub provides a central location where curated data from experiments, publications or training courses can be accessed. Each resource has associated metadata, tags and date of modification. The client creates and manages a local cache of files retrieved enabling quick and reproducible access.
A memory-safer wrapper around system dynamic library loading primitives. The most important safety guarantee by this library is prevention of dangling-Symbols that may occur after a Library is unloaded. Using this library allows loading dynamic libraries (also known as shared libraries) as well as use functions and static variables these libraries contain.