Convert text (and text in R objects) to Mocking SpongeBob case <https://knowyourmeme.com/memes/mocking-spongebob> and show them off in fun ways. CoNVErT TexT (AnD TeXt In r ObJeCtS) To MOCkINg SpoNgebOb CAsE <https://knowyourmeme.com/memes/mocking-spongebob> aND shOw tHem OFf IN Fun WayS.
Perform spatial analysis on network. Implement several methods for spatial analysis on network: Network Kernel Density estimation, building of spatial matrices based on network distance ('listw objects from spdep package), K functions estimation for point pattern analysis on network, k nearest neighbours on network, reachable area calculation, and graph generation References: Okabe et al (2019) <doi:10.1080/13658810802475491>; Okabe et al (2012, ISBN:978-0470770818);Baddeley et al (2015, ISBN:9781482210200).
This package provides a user-friendly tool for estimating both total and directional connectedness spillovers based on Diebold and Yilmaz (2009, 2012). It also provides the user with rolling estimation for total and net indices. User can find both orthogonalized and generalized versions for each kind of measures. See Diebold and Yilmaz (2009, 2012) find them at <doi:10.1111/j.1468-0297.2008.02208.x> and <doi:10.1016/j.ijforecast.2011.02.006>.
This package provides tools for obtaining, processing, and visualizing spectral reflectance data for the user-defined land or water surface classes for visual exploring in which wavelength the classes differ. Input should be a shapefile with polygons of surface classes (it might be different habitat types, crops, vegetation, etc.). The Sentinel-2 L2A satellite mission optical bands pixel data are obtained through the Google Earth Engine service (<https://earthengine.google.com/>) and used as a source of spectral data.
This package implements SplitWise', a hybrid regression approach that transforms numeric variables into either single-split (0/1) dummy variables or retains them as continuous predictors. The transformation is followed by stepwise selection to identify the most relevant variables. The default iterative mode adaptively explores partial synergies among variables to enhance model performance, while an alternative univariate mode applies simpler transformations independently to each predictor. For details, see Kurbucz et al. (2025) <doi:10.48550/arXiv.2505.15423>.
Calculate the statistical power to detect clusters using kernel-based spatial relative risk functions that are estimated using the sparr package. Details about the sparr package methods can be found in the tutorial: Davies et al. (2018) <doi:10.1002/sim.7577>. Details about kernel density estimation can be found in J. F. Bithell (1990) <doi:10.1002/sim.4780090616>. More information about relative risk functions using kernel density estimation can be found in J. F. Bithell (1991) <doi:10.1002/sim.4780101112>.
The Mass Spec Query Language (MassQL) is a domain-specific language enabling to express a query and retrieve mass spectrometry (MS) data in a more natural and understandable way for MS users. It is inspired by SQL and is by design programming language agnostic. The SpectraQL package adds support for the MassQL query language to R, in particular to MS data represented by Spectra objects. Users can thus apply MassQL expressions to analyze and retrieve specific data from Spectra objects.
This package implements the routines and algorithms developed and analysed in "Multiple Systems Estimation for Sparse Capture Data: Inferential Challenges when there are Non-Overlapping Lists" Chan, L, Silverman, B. W., Vincent, K (2019) <arXiv:1902.05156>. This package explicitly handles situations where there are pairs of lists which have no observed individuals in common. It deals correctly with parameters whose estimated values can be considered as being negative infinity. It also addresses other possible issues of non-existence and non-identifiability of maximum likelihood estimates.
Sparse modeling provides a mean selecting a small number of non-zero effects from a large possible number of candidate effects. This package includes a suite of methods for sparse modeling: estimation via EM or MCMC, approximate confidence intervals with nominal coverage, and diagnostic and summary plots. The method can implement sparse linear regression and sparse probit regression. Beyond regression analyses, applications include subgroup analysis, particularly for conjoint experiments, and panel data. Future versions will include extensions to models with truncated outcomes, propensity score, and instrumental variable analysis.
Spatial forecast verification refers to verifying weather forecasts when the verification set (forecast and observations) is on a spatial field, usually a high-resolution gridded spatial field. Most of the functions here require the forecast and observed fields to be gridded and on the same grid. For a thorough review of most of the methods in this package, please see Gilleland et al. (2009) <doi: 10.1175/2009WAF2222269.1> and for a tutorial on some of the main functions available here, see Gilleland (2022) <doi: 10.5065/4px3-5a05>.
SpotClean is a computational method to adjust for spot swapping in spatial transcriptomics data. Recent spatial transcriptomics experiments utilize slides containing thousands of spots with spot-specific barcodes that bind mRNA. Ideally, unique molecular identifiers at a spot measure spot-specific expression, but this is often not the case due to bleed from nearby spots, an artifact we refer to as spot swapping. SpotClean is able to estimate the contamination rate in observed data and decontaminate the spot swapping effect, thus increase the sensitivity and precision of downstream analyses.
Some R functions, such as optim(), require a function its gradient passed as separate arguments. When these are expensive to calculate it may be much faster to calculate the function (fn) and gradient (gr) together since they often share many calculations (chain rule). This package allows the user to pass in a single function that returns both the function and gradient, then splits (hence splitfngr') them so the results can be accessed separately. The functions provided allow this to be done with any number of functions/values, not just for functions and gradients.
This package provides interface to the Spectator Earth API <https://api.spectator.earth/>, mainly for obtaining the acquisition plans and satellite overpasses for Sentinel-1, Sentinel-2, Landsat-8 and Landsat-9 satellites. Current position and trajectory can also be obtained for a much larger set of satellites. It is also possible to search the archive for available images over the area of interest for a given (past) period, get the URL links to download the whole image tiles, or alternatively to download the image for just the area of interest based on selected spectral bands.
This package implements the algorithm described in Barron, M., and Li, J. (Not yet published). This algorithm clusters samples from multiple ordered populations, links the clusters across the conditions and identifies marker genes for these changes. The package was designed for scRNA-Seq data but is also applicable to many other data types, just replace cells with samples and genes with variables. The package also contains functions for estimating the parameters for SparseMDC as outlined in the paper. We recommend that users further select their marker genes using the magnitude of the cluster centers.
This package creates a wrapper for the SuiteSparse routines that execute the Takahashi equations. These equations compute the elements of the inverse of a sparse matrix at locations where the its Cholesky factor is structurally non-zero. The resulting matrix is known as a sparse inverse subset. Some helper functions are also implemented. Support for spam matrices is currently limited and will be implemented in the future. See Rue and Martino (2007) <doi:10.1016/j.jspi.2006.07.016> and Zammit-Mangion and Rougier (2018) <doi:10.1016/j.csda.2018.02.001> for the application of these equations to statistics.
Hail is an open-source, general-purpose, python based data analysis tool with additional data types and methods for working with genomic data, see <https://hail.is/>. Hail is built to scale and has first-class support for multi-dimensional structured data, like the genomic data in a genome-wide association study (GWAS). Hail is exposed as a python library, using primitives for distributed queries and linear algebra implemented in scala', spark', and increasingly C++'. The sparkhail is an R extension using sparklyr package. The idea is to help R users to use hail functionalities with the well-know tidyverse syntax, see <https://www.tidyverse.org/>.
This package implements a two-stage estimation approach for Cox regression using five-parameter M-spline functions to model the baseline hazard. It allows for flexible hazard shapes and model selection based on log-likelihood criteria as described in Teranishi et al.(2025). In addition, the package provides functions for constructing and evaluating B-spline copulas based on five M-spline or I-spline basis functions, allowing users to flexibly model and compute bivariate dependence structures. Both the copula function and its density can be evaluated. Furthermore, the package supports computation of dependence measures such as Kendall's tau and Spearman's rho, derived analytically from the copula parameters.
This package provides elastic net penalized maximum likelihood estimator for structural equation models (SEM). The package implements `lasso` and `elastic net` (l1/l2) penalized SEM and estimates the model parameters with an efficient block coordinate ascent algorithm that maximizes the penalized likelihood of the SEM. Hyperparameters are inferred from cross-validation (CV). A Stability Selection (STS) function is also available to provide accurate causal effect selection. The software achieves high accuracy performance through a `Network Generative Pre-trained Transformer` (Network GPT) Framework with two steps: 1) pre-trains the model to generate a complete (fully connected) graph; and 2) uses the complete graph as the initial state to fit the `elastic net` penalized SEM.
Automatic generation and selection of spatial predictors for Random Forest models fitted to spatially structured data. Spatial predictors are constructed from a distance matrix among training samples using Moran's Eigenvector Maps (MEMs; Dray, Legendre, and Peres-Neto 2006 <DOI:10.1016/j.ecolmodel.2006.02.015>) or the RFsp approach (Hengl et al. <DOI:10.7717/peerj.5518>). These predictors are used alongside user-supplied explanatory variables in Random Forest models. The package provides functions for model fitting, multicollinearity reduction, interaction identification, hyperparameter tuning, evaluation via spatial cross-validation, and result visualization using partial dependence and interaction plots. Model fitting relies on the ranger package (Wright and Ziegler 2017 <DOI:10.18637/jss.v077.i01>).
Sparse principal component analysis (SPCA) attempts to find sparse weight vectors (loadings), i.e., a weight vector with only a few active (nonzero) values. This approach provides better interpretability for the principal components in high-dimensional data settings. This is, because the principal components are formed as a linear combination of only a few of the original variables. This package provides efficient routines to compute SPCA. Specifically, a variable projection solver is used to compute the sparse solution. In addition, a fast randomized accelerated SPCA routine and a robust SPCA routine is provided. Robust SPCA allows to capture grossly corrupted entries in the data. The methods are discussed in detail by N. Benjamin Erichson et al. (2018) <arXiv:1804.00341>.
The analysis and visualization of alternative splicing (AS) events from RNA sequencing data remains challenging. SpliceWiz is a user-friendly and performance-optimized R package for AS analysis, by processing alignment BAM files to quantify read counts across splice junctions, IRFinder-based intron retention quantitation, and supports novel splicing event identification. We introduce a novel visualization for AS using normalized coverage, thereby allowing visualization of differential AS across conditions. SpliceWiz features a shiny-based GUI facilitating interactive data exploration of results including gene ontology enrichment. It is performance optimized with multi-threaded processing of BAM files and a new COV file format for fast recall of sequencing coverage. Overall, SpliceWiz streamlines AS analysis, enabling reliable identification of functionally relevant AS events for further characterization.
`SPOTlight` provides a method to deconvolute spatial transcriptomics spots using a seeded NMF approach along with visualization tools to assess the results. Spatially resolved gene expression profiles are key to understand tissue organization and function. However, novel spatial transcriptomics (ST) profiling techniques lack single-cell resolution and require a combination with single-cell RNA sequencing (scRNA-seq) information to deconvolute the spatially indexed datasets. Leveraging the strengths of both data types, we developed SPOTlight, a computational tool that enables the integration of ST with scRNA-seq data to infer the location of cell types and states within a complex tissue. SPOTlight is centered around a seeded non-negative matrix factorization (NMF) regression, initialized using cell-type marker genes and non-negative least squares (NNLS) to subsequently deconvolute ST capture locations (spots).
Implementation of various estimation methods for dynamic factor models (DFMs) including principal components analysis (PCA) Stock and Watson (2002) <doi:10.1198/016214502388618960>, 2Stage Giannone et al. (2008) <doi:10.1016/j.jmoneco.2008.05.010>, expectation-maximisation (EM) Banbura and Modugno (2014) <doi:10.1002/jae.2306>, and the novel EM-sparse approach for sparse DFMs Mosley et al. (2023) <arXiv:2303.11892>. Options to use classic multivariate Kalman filter and smoother (KFS) equations from Shumway and Stoffer (1982) <doi:10.1111/j.1467-9892.1982.tb00349.x> or fast univariate KFS equations from Koopman and Durbin (2000) <doi:10.1111/1467-9892.00186>, and options for independent and identically distributed (IID) white noise or auto-regressive (AR(1)) idiosyncratic errors. Algorithms coded in C++ and linked to R via RcppArmadillo'.
Many complex diseases are known to be affected by the interactions between genetic variants and environmental exposures beyond the main genetic and environmental effects. Existing Bayesian methods for gene-environment (GÃ E) interaction studies are challenged by the high-dimensional nature of the study and the complexity of environmental influences. We have developed a novel and powerful semi-parametric Bayesian variable selection method that can accommodate linear and nonlinear GÃ E interactions simultaneously (Ren et al. (2020) <doi:10.1002/sim.8434>). Furthermore, the proposed method can conduct structural identification by distinguishing nonlinear interactions from main effects only case within Bayesian framework. Spike-and-slab priors are incorporated on both individual and group level to shrink coefficients corresponding to irrelevant main and interaction effects to zero exactly. The Markov chain Monte Carlo algorithms of the proposed and alternative methods are efficiently implemented in C++.