Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools to import survey files in the .sss (triple-s) format. The package provides the function read.sss() that reads the .asc (or .csv') and .sss files of a triple-s survey data file. See also <https://triple-s.org/>.
This package performs correlation matrix segmentation and applies a test procedure to detect highly correlated regions in gene expression.
Computes multivariate normal (MVN) densities, and samples from MVN distributions, when the covariance or precision matrix is sparse.
Routines for creating, manipulating, and performing Bayesian inference about Gaussian processes in one and two dimensions using the Fourier basis approximation: simulation and plotting of processes, calculation of coefficient variances, calculation of process density, coefficient proposals (for use in MCMC). It uses R environments to store GP objects as references/pointers.
Data processing and visualizations for rodent vocalizations exported from DeepSqueak'. These functions are compatible with the SqueakR Shiny Dashboard, which can be used to visualize experimental results and analyses.
This package provides functions to read and write ESRI shapefiles.
This package provides a pipeline for estimating the average treatment effect via semi-supervised learning. Outcome regression is fit with cross-fitting using various machine learning method or user customized function. Doubly robust ATE estimation leverages both labeled and unlabeled data under a semi-supervised missing-data framework. For more details see Hou et al. (2021) <doi:10.48550/arxiv.2110.12336>. A detailed vignette is included.
This package provides tools for Genotype by Environment Interaction (GEI) analysis, using statistical models and visualizations to assess genotype performance across environments. It helps researchers explore interaction effects, stability, and adaptability in multi-environment trials, identifying the best-performing genotypes in different conditions. Which Win Where!
An implementation of a phylogenetic comparative method. It can fit univariate among-species Ornstein-Uhlenbeck models of phenotypic trait evolution, where the trait evolves towards a primary optimum. The optimum can be modelled as a single parameter, as multiple discrete regimes on the phylogenetic tree, and/or with continuous covariates. See also Hansen (1997) <doi:10.2307/2411186>, Butler & King (2004) <doi:10.1086/426002>, Hansen et al. (2008) <doi:10.1111/j.1558-5646.2008.00412.x>.
Use the R console as an interactive learning environment. Users receive immediate feedback as they are guided through self-paced lessons in data science and R programming.
This package implements estimation methods for shrinkage covariance matrices using user-specified covariance targets. The covariance target is a structured matrix towards which the unbiased sample covariance is shrunk, optionally incorporating prior knowledge. Shrinkage intensity is computed analytically. The method is described and applied to microarray gene expression data in Jelizarow et al. (2010) <doi:10.1093/bioinformatics/btq323>.
Allows users to produce diagnostic procedures and graphic tools for the evaluation of Small Area estimators.
This package provides tools for modeling non-continuous linear responses of ecological communities to environmental data. The package is straightforward through three steps: (1) data ordering (function OrdData()), (2) split-moving-window analysis (function SMW()) and (3) piecewise redundancy analysis (function pwRDA()). Relevant references include Cornelius and Reynolds (1991) <doi:10.2307/1941559> and Legendre and Legendre (2012, ISBN: 9780444538697).
This package provides routines for scoring behavioral questionnaires. Includes scoring procedures for the International Physical Activity Questionnaire (IPAQ) <http://www.ipaq.ki.se>. Compares physical functional performance to the age- and gender-specific normal ranges.
This package provides a set of functions used in teaching STATS 201/208 Data Analysis at the University of Auckland. The functions are designed to make parts of R more accessible to a large undergraduate population who are mostly not statistics majors.
Add shiny inputs with one or more inline buttons that grow and shrink with inputs. Also add tool tips to input buttons and styling and messages for input validation.
Computes scores of outlyingness for data sets consisting of nominal variables and includes various evaluation metrics for assessing performance of outlier identification algorithms producing scores of outlyingness. The scores of nominal outlyingness are computed based on the framework of Costa and Papatsouma (2025) <doi:10.48550/arXiv.2408.07463>.
This package provides tools for shoreline dating coastal Stone Age sites. The implemented method was developed in Roalkvam (2023) <doi:10.1016/j.quascirev.2022.107880> for the Norwegian Skagerrak coast. Although it can be extended to other areas, this also forms the core area for application of the package. Shoreline dating is based on the present-day elevation of a site, a reconstruction of past relative sea-level change, and empirically derived estimates of the likely elevation of the sites above the contemporaneous sea-level when they were in use. The geographical and temporal coverage of the method thus follows from the availability of local geological reconstructions of shoreline displacement and the degree to which the settlements to be dated have been located on or close to the shoreline when they were in use. Methods for numerical treatment and visualisation of the dates are provided, along with basic tools for visualising and evaluating the location of sites.
This package implements exact, normally approximated, and sampling-based sensitivity analysis for observational studies with contingency tables. Includes exact (kernel-based), normal approximation, and sequential importance sampling (SIS) methods using Rcpp for computational efficiency. The methods build upon the framework introduced in Rosenbaum (2002) <doi:10.1007/978-1-4757-3692-2> and the generalized design sensitivity framework developed by Chiu (2025) <doi:10.48550/arXiv.2507.17207>.
We propose a novel two-step procedure to combine epidemiological data obtained from diverse sources with the aim to quantify risk factors affecting the probability that an individual develops certain disease such as cancer. See Hui Huang, Xiaomei Ma, Rasmus Waagepetersen, Theodore R. Holford, Rong Wang, Harvey Risch, Lloyd Mueller & Yongtao Guan (2014) A New Estimation Approach for Combining Epidemiological Data From Multiple Sources, Journal of the American Statistical Association, 109:505, 11-23, <doi:10.1080/01621459.2013.870904>.
This package provides methods for inference using stacked multiple imputations augmented with weights. The vignette provides example R code for implementation in general multiple imputation settings. For additional details about the estimation algorithm, we refer the reader to Beesley, Lauren J and Taylor, Jeremy M G (2020) â A stacked approach for chained equations multiple imputation incorporating the substantive modelâ <doi:10.1111/biom.13372>, and Beesley, Lauren J and Taylor, Jeremy M G (2021) â Accounting for not-at-random missingness through imputation stackingâ <arXiv:2101.07954>.
Load and export SomaScan data via the Standard BioTools, Inc. structured text file called an ADAT ('*.adat'). For file format see <https://github.com/SomaLogic/SomaLogic-Data/blob/main/README.md>. The package also exports auxiliary functions for manipulating, wrangling, and extracting relevant information from an ADAT object once in memory.
Allows users to quickly apply individual or multiple metrics to evaluate Monte Carlo simulation studies.
The code computes the structural intervention distance (SID) between a true directed acyclic graph (DAG) and an estimated DAG. Definition and details about the implementation can be found in J. Peters and P. Bühlmann: "Structural intervention distance (SID) for evaluating causal graphs", Neural Computation 27, pages 771-799, 2015 <doi:10.1162/NECO_a_00708>.