Overture Maps offers free and open geospatial map data sourced from various providers and standardized to a common schema. This tool allows you to download Overture Maps data for a specific region of interest and convert it to several different file formats. For more information, visit <https://overturemaps.org/download/>.
This is a framework for fitting multiple caret models. It uses the same re-sampling strategy as well as creating ensembles of such models. Use caretList
to fit multiple models and then use caretEnsemble
to combine them greedily or caretStack
to combine them using a caret model.
Fit Conway-Maxwell Poisson (COM-Poisson or CMP) regression models to count data (Sellers & Shmueli, 2010) <doi:10.1214/09-AOAS306>. The package provides functions for model estimation, dispersion testing, and diagnostics. Zero-inflated CMP regression (Sellers & Raim, 2016) <doi:10.1016/j.csda.2016.01.007> is also supported.
This package provides a GUI to correct measurement bias in DNA methylation analyses. The BiasCorrector
package just wraps the functions implemented in the R package rBiasCorrection
into a shiny web application in order to make them more easily accessible. Publication: Kapsner et al. (2021) <doi:10.1002/ijc.33681>.
Code for fitting and assessing models for the growth of trees. In particular for the Bayesian neighborhood competition linear regression model of Allen (2020): methods for model fitting and generating fitted/predicted values, evaluating the effect of competitor species identity using permutation tests, and evaluating model performance using spatial cross-validation.
Identify the optimal timing for new treatment initiation during multiple state disease transition, including multistate model fitting, simulation of mean residual lifetime for a given transition state, and estimation of confidence interval. The method is referred to de Wreede, L., Fiocco, M., & Putter, H. (2011) <doi:10.18637/jss.v038.i07>.
Calculates an acceptance sampling plan, (sample size and acceptance number) based in MIL STD 105E, Dodge Romig and MIL STD 414 tables and procedures. The arguments for each function are related to lot size, inspection level and quality level. The specific plan operating curve (OC), is calculated by the binomial distribution.
When plotting treated-minus-control differences, after-minus-before changes, or difference-in-differences, the ttrans()
function symmetrically transforms the positive and negative tails to aid plotting. The package includes an observational study with three control groups and an unaffected outcome; see Rosenbaum (2022) <doi:10.1080/00031305.2022.2063944>.
This is a package for saving SingleCellExperiment
into file artifacts, and loading them back into memory. This is a more portable alternative to serialization of such objects into RDS files. Each artifact is associated with metadata for further interpretation; downstream applications can enrich this metadata with context-specific properties.
This package provides tools to efficiently represent and manipulate genomic annotations and alignments is playing a central role when it comes to analyzing high-throughput sequencing data (a.k.a. NGS data). The GenomicRanges package defines general purpose containers for storing and manipulating genomic intervals and variables defined along a genome.
This package provides a RAII scope guard that will run a given closure when it goes out of scope, even if the code between panics (assuming unwinding panic). Defines the macros defer!
, defer_on_unwind!
, defer_on_success!
as shorthands for guards with one of the implemented strategies.
This package provides a RAII scope guard that will run a given closure when it goes out of scope, even if the code between panics (assuming unwinding panic). Defines the macros defer!
, defer_on_unwind!
, defer_on_success!
as shorthands for guards with one of the implemented strategies.
This package improves and replaces the GNU Emacs commands that interactively evaluate Emacs Lisp expressions. The new commands replace standard key bindings and are all prefixed with rsw-elisp-
. They work the same way as the old commands when called non-interactively; only the interactive behavior should be different.
Implement maximum likelihood estimation for Poisson generalized linear models with grouped and right-censored count data. Intended to be used for analyzing grouped and right-censored data, which is widely applied in many branches of social sciences. The algorithm implemented is described in Fu et al., (2021) <doi:10.1111/rssa.12678>.
This package implements the sample size methods for hierarchical 2x2 factorial trials under two choices of effect estimands and a series of hypothesis tests proposed in "Sample size calculation in hierarchical 2x2 factorial trials with unequal cluster sizes" (under review), and provides the table and plot generators for the sample size estimations.
Fits nonparametric item and option characteristic curves using kernel smoothing. It allows for optimal selection of the smoothing bandwidth using cross-validation and a variety of exploratory plotting tools. The kernel smoothing is based on methods described in Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis. Chapman & Hall, London.
This package implements non-parametric tests from Higgins (2004, ISBN:0534387756), including tests for one sample, two samples, k samples, paired comparisons, blocked designs, trends and association. Built with Rcpp for efficiency and R6 for flexible, object-oriented design, the package provides a unified framework for performing or creating custom permutation tests.
Common ecological distributions for nimble models in the form of nimbleFunction
objects. Includes Cormack-Jolly-Seber, occupancy, dynamic occupancy, hidden Markov, dynamic hidden Markov, and N-mixture models. (Jolly (1965) <DOI: 10.2307/2333826>, Seber (1965) <DOI: 10.2307/2333827>, Turek et al. (2016) <doi:10.1007/s10651-016-0353-z>).
Generation of multiple count, binary and continuous variables simultaneously given the marginal characteristics and association structure. Throughout the package, the word Poisson is used to imply count data under the assumption of Poisson distribution. The details of the method are explained in Amatya et al. (2015) <DOI:10.1080/00949655.2014.953534>.
The package Fletcher2013a contains time-course gene expression data from MCF-7 cells treated under different experimental systems in order to perturb FGFR2 signalling. The data comes from Fletcher et al. (Nature Comms 4:2464, 2013) where further details about the background and the experimental design of the study can be found.
omicRexposome
systematizes the association evaluation between exposures and omic data, taking advantage of MultiDataSet
for coordinated data management, rexposome for exposome data definition and limma for association testing. Also to perform data integration mixing exposome and omic data using multi co-inherent analysis (omicade4) and multi-canonical correlation analysis (PMA).
This package adds the ability to run tests by filtering the test tree based on the result of a previous test run. You can use this to run only those tests that failed in the last run, or to only run the tests that have been added since previous test run.
Allows to generate on-demand or by batch, any R documentation file, whatever is kind, data, function, class or package. It populates documentation sections, either automatically or by considering your input. Input code could be standard R code or offensive programming code. Documentation content completeness depends on the type of code you use. With offensive programming code, expect generated documentation to be fully completed, from a format and content point of view. With some standard R code, you will have to activate post processing to fill-in any section that requires complements. Produced manual page validity is automatically tested against R documentation compliance rules. Documentation language proficiency, wording style, and phrasal adjustments remains your job.
This package implements a quantified approach to the Kraljic Matrix (Kraljic, 1983, <https://hbr.org/1983/09/purchasing-must-become-supply-management>) for strategically analyzing a firmâ s purchasing portfolio. It combines multi-objective decision analysis to measure purchasing characteristics and uses this information to place products and services within the Kraljic Matrix.