_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-multibiasmeta 0.2.2
Propagated dependencies: r-robumeta@2.1 r-rlang@1.1.4 r-rdpack@2.6.1 r-purrr@1.0.2 r-metafor@4.6-0 r-metabias@0.1.1 r-evalue@4.1.3 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/mathurlabstanford/multibiasmeta
Licenses: Expat
Synopsis: Sensitivity Analysis for Multiple Biases in Meta-Analyses
Description:

Meta-analyses can be compromised by studies internal biases (e.g., confounding in nonrandomized studies) as well as by publication bias. This package conducts sensitivity analyses for the joint effects of these biases (per Mathur (2022) <doi:10.31219/osf.io/u7vcb>). These sensitivity analyses address two questions: (1) For a given severity of internal bias across studies and of publication bias, how much could the results change?; and (2) For a given severity of publication bias, how severe would internal bias have to be, hypothetically, to attenuate the results to the null or by a given amount?

r-riskscorescvd 0.2.0
Propagated dependencies: r-pooledcohort@0.0.2 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/r.scm (guix-cran packages r)
Home page: https://github.com/dvicencio/RiskScorescvd
Licenses: Expat
Synopsis: Cardiovascular Risk Scores Calculator
Description:

This package provides a tool to calculate Cardiovascular Risk Scores in large data frames. Cardiovascular risk scores are statistical tools used to assess an individual's likelihood of developing a cardiovascular disease based on various risk factors, such as age, gender, blood pressure, cholesterol levels, and smoking. Here we bring together the six most commonly used in the emergency department. Using RiskScorescvd', you can calculate all the risk scores in an extended dataset in seconds. PCE (ASCVD) described in Goff, et al (2013) <doi:10.1161/01.cir.0000437741.48606.98>. EDACS described in Mark DG, et al (2016) <doi:10.1016/j.jacc.2017.11.064>. GRACE described in Fox KA, et al (2006) <doi:10.1136/bmj.38985.646481.55>. HEART is described in Mahler SA, et al (2017) <doi:10.1016/j.clinbiochem.2017.01.003>. SCORE2/OP described in SCORE2 working group and ESC Cardiovascular risk collaboration (2021) <doi:10.1093/eurheartj/ehab309>. TIMI described in Antman EM, et al (2000) <doi:10.1001/jama.284.7.835>. SCORE2-Diabetes described in SCORE2-Diabetes working group and ESC Cardiovascular risk collaboration (2023) <doi:10.1093/eurheartj/ehab260>. SCORE2/OP with CKD add-on described in Kunihiro M et al (2022) <doi:10.1093/eurjpc/zwac176>.

r-ecotonefinder 0.2.3
Propagated dependencies: r-withr@3.0.2 r-vegclust@2.0.2 r-vegan@2.6-8 r-rmisc@1.5.1 r-rlang@1.1.4 r-reshape@0.8.9 r-qgraph@1.9.8 r-purrr@1.0.2 r-plyr@1.8.9 r-philentropy@0.9.0 r-igraph@2.1.1 r-ggplot2@3.5.1 r-e1071@1.7-16 r-corrplot@0.95 r-colorspace@2.1-1 r-cluster@2.1.6
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://cran.r-project.org/package=EcotoneFinder
Licenses: Expat
Synopsis: Characterising and Locating Ecotones and Communities
Description:

Analytical methods to locate and characterise ecotones, ecosystems and environmental patchiness along ecological gradients. Methods are implemented for isolated sampling or for space/time series. It includes Detrended Correspondence Analysis (Hill & Gauch (1980) <doi:10.1007/BF00048870>), fuzzy clustering (De Cáceres et al. (2010) <doi:10.1080/01621459.1963.10500845>), biodiversity indices (Jost (2006) <doi:10.1111/j.2006.0030-1299.14714.x>), and network analyses (Epskamp et al. (2012) <doi:10.18637/jss.v048.i04>) - as well as tools to explore the number of clusters in the data. Functions to produce synthetic ecological datasets are also provided.

r-mixpoissonreg 1.0.0
Propagated dependencies: r-tibble@3.2.1 r-statmod@1.5.0 r-rlang@1.1.4 r-rfast@2.1.0 r-pbapply@1.7-2 r-magrittr@2.0.3 r-lmtest@0.9-40 r-gridextra@2.3 r-ggrepel@0.9.6 r-ggplot2@3.5.1 r-generics@0.1.3 r-gamlss-dist@6.1-1 r-gamlss@5.4-22 r-formula@1.2-5 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/vpnsctl/mixpoissonreg/
Licenses: GPL 2
Synopsis: Mixed Poisson Regression for Overdispersed Count Data
Description:

Fits mixed Poisson regression models (Poisson-Inverse Gaussian or Negative-Binomial) on data sets with response variables being count data. The models can have varying precision parameter, where a linear regression structure (through a link function) is assumed to hold on the precision parameter. The Expectation-Maximization algorithm for both these models (Poisson Inverse Gaussian and Negative Binomial) is an important contribution of this package. Another important feature of this package is the set of functions to perform global and local influence analysis. See Barreto-Souza and Simas (2016) <doi:10.1007/s11222-015-9601-6> for further details.

r-streamdepletr 0.2.0
Propagated dependencies: r-sf@1.0-19 r-rmpfr@0.9-5 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/FoundrySpatial/streamDepletr
Licenses: Modified BSD
Synopsis: Estimate Streamflow Depletion Due to Groundwater Pumping
Description:

Implementation of analytical models for estimating streamflow depletion due to groundwater pumping, and other related tools. Functions are broadly split into two groups: (1) analytical streamflow depletion models, which estimate streamflow depletion for a single stream reach resulting from groundwater pumping; and (2) depletion apportionment equations, which distribute estimated streamflow depletion among multiple stream reaches within a stream network. See Zipper et al. (2018) <doi:10.1029/2018WR022707> for more information on depletion apportionment equations and Zipper et al. (2019) <doi:10.1029/2018WR024403> for more information on analytical depletion functions, which combine analytical models and depletion apportionment equations.

r-soilchemistry 0.1.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=soilchemistry
Licenses: GPL 3+
Synopsis: Computation of Properties Related to Soil Chemical Environment and Nutrient Availability
Description:

Facilitates basic and equation-based analyses of some important soil properties related to soil chemical environment and nutrient availability to plants. Freundlich H (1907). <doi:10.1515/zpch-1907-5723>. Datta SP, Bhadoria PBS (1999). <doi:10.1002%2F%28SICI%291522-2624%28199903%29162%3A2%3C183%3A%3AAID-JPLN183%3E3.0.CO%3B2-A>."Boron adsorption and desorption in some acid soils of West Bengal, India". Langmuir I (1918). <doi:10.1021/ja02242a004> "The adsorption of gases on plane surfaces of glass, mica, and platinum". Khasawneh FE (1971). <doi:10.2136/sssaj1971.03615995003500030029x> "Solution ion activity and plant growth".

r-sim2dpredictr 0.1.1
Propagated dependencies: r-tibble@3.2.1 r-spam@2.11-0 r-rdpack@2.6.1 r-matrixcalc@1.0-6 r-mass@7.3-61 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/jmleach-bst/sim2Dpredictr
Licenses: GPL 3
Synopsis: Simulate Outcomes Using Spatially Dependent Design Matrices
Description:

This package provides tools for simulating spatially dependent predictors (continuous or binary), which are used to generate scalar outcomes in a (generalized) linear model framework. Continuous predictors are generated using traditional multivariate normal distributions or Gauss Markov random fields with several correlation function approaches (e.g., see Rue (2001) <doi:10.1111/1467-9868.00288> and Furrer and Sain (2010) <doi:10.18637/jss.v036.i10>), while binary predictors are generated using a Boolean model (see Cressie and Wikle (2011, ISBN: 978-0-471-69274-4)). Parameter vectors exhibiting spatial clustering can also be easily specified by the user.

r-accessibility 1.4.0
Propagated dependencies: r-rdpack@2.6.1 r-hmisc@5.2-0 r-data-table@1.16.2 r-checkmate@2.3.2
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://github.com/ipeaGIT/accessibility
Licenses: Expat
Synopsis: Transport Accessibility Measures
Description:

This package provides a set of fast and convenient functions to help conducting accessibility analyses. Given a pre-computed travel cost matrix and a land use dataset (containing the location of jobs, healthcare and population, for example), the package allows one to calculate accessibility levels and accessibility poverty and inequality. The package covers the majority of the most commonly used accessibility measures (such as cumulative opportunities, gravity-based and floating catchment areas methods), as well as the most frequently used inequality and poverty metrics (such as the Palma ratio, the concentration and Theil indices and the FGT family of measures).

r-metaensembler 0.1.0
Propagated dependencies: r-randomforest@4.7-1.2 r-gridextra@2.3 r-ggplot2@3.5.1 r-gbm@2.2.2 r-e1071@1.7-16 r-caret@6.0-94
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=metaEnsembleR
Licenses: GPL 2+
Synopsis: Automated Intuitive Package for Meta-Ensemble Learning
Description:

Extends the base classes and methods of caret package for integration of base learners. The user can input the number of different base learners, and specify the final learner, along with the train-validation-test data partition split ratio. The predictions on the unseen new data is the resultant of the ensemble meta-learning <https://machinelearningmastery.com/stacking-ensemble-machine-learning-with-python/> of the heterogeneous learners aimed to reduce the generalization error in the predictive models. It significantly lowers the barrier for the practitioners to apply heterogeneous ensemble learning techniques in an amateur fashion to their everyday predictive problems.

r-certara-nlme8 3.0.1
Propagated dependencies: r-xml2@1.3.6 r-reshape@0.8.9 r-data-table@1.16.2 r-batchtools@0.9.17
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=Certara.NLME8
Licenses: LGPL 3
Synopsis: Utilities for Certara's Nonlinear Mixed-Effects Modeling Engine
Description:

Perform Nonlinear Mixed-Effects (NLME) Modeling using Certara's NLME-Engine. Access the same Maximum Likelihood engines used in the Phoenix platform, including algorithms for parametric methods, individual, and pooled data analysis <https://www.certara.com/app/uploads/2020/06/BR_PhoenixNLME-v4.pdf>. The Quasi-Random Parametric Expectation-Maximization Method (QRPEM) is also supported <https://www.page-meeting.org/default.asp?abstract=2338>. Execution is supported both locally or on remote machines. Remote execution includes support for Linux Sun Grid Engine (SGE), Terascale Open-source Resource and Queue Manager (TORQUE) grids, Linux and Windows multicore, and individual runs.

r-cubicbsplines 1.0.0
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: http://www.statsoc.ulg.ac.be/
Licenses: GPL 3
Synopsis: Computation of a Cubic B-Spline Basis and Its Derivatives
Description:

Computation of a cubic B-spline basis for arbitrary knots. It also provides the 1st and 2nd derivatives, as well as the integral of the basis elements. It is used by the author to fit penalized B-spline models, see e.g. Jullion, A. and Lambert, P. (2006) <doi:10.1016/j.csda.2006.09.027>, Lambert, P. and Eilers, P.H.C. (2009) <doi:10.1016/j.csda.2008.11.022> and, more recently, Lambert, P. (2021) <doi:10.1016/j.csda.2021.107250>. It is inspired by the algorithm developed by de Boor, C. (1977) <doi:10.1137/0714026>.

r-manifoldoptim 1.0.1
Propagated dependencies: r-rcpparmadillo@14.0.2-1 r-rcpp@1.0.13-1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=ManifoldOptim
Licenses: GPL 2+
Synopsis: An R Interface to the 'ROPTLIB' Library for Riemannian Manifold Optimization
Description:

An R interface to version 0.3 of the ROPTLIB optimization library (see <https://www.math.fsu.edu/~whuang2/> for more information). Optimize real- valued functions over manifolds such as Stiefel, Grassmann, and Symmetric Positive Definite matrices. For details see Martin et. al. (2020) <doi:10.18637/jss.v093.i01>. Note that the optional ldr package used in some of this package's examples can be obtained from either JSS <https://www.jstatsoft.org/index.php/jss/article/view/v061i03/2886> or from the CRAN archives <https://cran.r-project.org/src/contrib/Archive/ldr/ldr_1.3.3.tar.gz>.

r-plotfunctions 1.4
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://jacolienvanrij.com/tutorials.html
Licenses: GPL 2+
Synopsis: Various functions to facilitate visualization of data and analysis
Description:

When analyzing data, plots are a helpful tool for visualizing data and interpreting statistical models. This package provides a set of simple tools for building plots incrementally, starting with an empty plot region, and adding bars, data points, regression lines, error bars, gradient legends, density distributions in the margins, and even pictures. The package builds further on R graphics by simply combining functions and settings in order to reduce the amount of code to produce for the user. As a result, the package does not use formula input or special syntax, but can be used in combination with default R plot functions.

r-boomspikeslab 1.2.6
Propagated dependencies: r-boom@0.9.15
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BoomSpikeSlab
Licenses: LGPL 2.1 FSDG-compatible
Synopsis: MCMC for Spike and Slab Regression
Description:

Spike and slab regression with a variety of residual error distributions corresponding to Gaussian, Student T, probit, logit, SVM, and a few others. Spike and slab regression is Bayesian regression with prior distributions containing a point mass at zero. The posterior updates the amount of mass on this point, leading to a posterior distribution that is actually sparse, in the sense that if you sample from it many coefficients are actually zeros. Sampling from this posterior distribution is an elegant way to handle Bayesian variable selection and model averaging. See <DOI:10.1504/IJMMNO.2014.059942> for an explanation of the Gaussian case.

r-neonutilities 2.4.3
Propagated dependencies: r-tidyr@1.3.1 r-stringr@1.5.1 r-r-utils@2.12.3 r-pbapply@1.7-2 r-jsonlite@1.8.9 r-httr@1.4.7 r-downloader@0.4 r-data-table@1.16.2 r-curl@6.0.1
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://github.com/NEONScience/NEON-utilities
Licenses: AGPL 3
Synopsis: Utilities for Working with NEON Data
Description:

NEON data packages can be accessed through the NEON Data Portal <https://www.neonscience.org> or through the NEON Data API (see <https://data.neonscience.org/data-api> for documentation). Data delivered from the Data Portal are provided as monthly zip files packaged within a parent zip file, while individual files can be accessed from the API. This package provides tools that aid in discovering, downloading, and reformatting data prior to use in analyses. This includes downloading data via the API, merging data tables by type, and converting formats. For more information, see the readme file at <https://github.com/NEONScience/NEON-utilities>.

r-spanishoddata 0.1.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://rOpenSpain.github.io/spanishoddata/
Licenses: Expat
Synopsis: Get Spanish Origin-Destination Data
Description:

Gain seamless access to origin-destination (OD) data from the Spanish Ministry of Transport, hosted at <https://www.transportes.gob.es/ministerio/proyectos-singulares/estudios-de-movilidad-con-big-data/opendata-movilidad>. This package simplifies the management of these large datasets by providing tools to download zone boundaries, handle associated origin-destination data, and process it efficiently with the duckdb database interface. Local caching minimizes repeated downloads, streamlining workflows for researchers and analysts. Extensive documentation is available at <https://ropenspain.github.io/spanishoddata/index.html>, offering guides on creating static and dynamic mobility flow visualizations and transforming large datasets into analysis-ready formats.

r-pmcalibration 0.2.0
Propagated dependencies: r-survival@3.7-0 r-pbapply@1.7-2 r-mgcv@1.9-1 r-mass@7.3-61 r-hmisc@5.2-0
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/stephenrho/pmcalibration
Licenses: GPL 3
Synopsis: Calibration Curves for Clinical Prediction Models
Description:

Fit calibrations curves for clinical prediction models and calculate several associated metrics (Eavg, E50, E90, Emax). Ideally predicted probabilities from a prediction model should align with observed probabilities. Calibration curves relate predicted probabilities (or a transformation thereof) to observed outcomes via a flexible non-linear smoothing function. pmcalibration allows users to choose between several smoothers (regression splines, generalized additive models/GAMs, lowess, loess). Both binary and time-to-event outcomes are supported. See Van Calster et al. (2016) <doi:10.1016/j.jclinepi.2015.12.005>; Austin and Steyerberg (2019) <doi:10.1002/sim.8281>; Austin et al. (2020) <doi:10.1002/sim.8570>.

r-selectionbias 2.0.0
Propagated dependencies: r-lifecycle@1.0.4 r-arm@1.14-4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/stizet/SelectionBias
Licenses: Expat
Synopsis: Calculates Bounds for the Selection Bias for Binary Treatment and Outcome Variables
Description:

Computes bounds and sensitivity parameters as part of sensitivity analysis for selection bias. Different bounds are provided: the SV (Smith and VanderWeele), AF (assumption-free) bound, GAF (generalized AF), and CAF (counterfactual AF) bounds. The calculation of the sensitivity parameters for the SV and GAF bounds assume an additional dependence structure in form of a generalized M-structure. The bounds can be calculated for any structure as long as the necessary assumptions hold. See Smith and VanderWeele (2019) <doi:10.1097/EDE.0000000000001032>, Zetterstrom and Waernbaum (2022) <doi:10.1515/em-2022-0108> and Zetterstrom (2024) <doi:10.1515/em-2023-0033>.

r-mmirestriktor 0.3.1
Propagated dependencies: r-shinythemes@1.2.0 r-shiny@1.8.1 r-rpostgres@1.4.7 r-restriktor@0.6-10 r-pool@1.0.4 r-mmcards@0.1.1 r-mass@7.3-61 r-dt@0.33
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/mightymetrika/mmirestriktor
Licenses: Expat
Synopsis: Informative Hypothesis Testing Web Applications
Description:

Offering enhanced statistical power compared to traditional hypothesis testing methods, informative hypothesis testing allows researchers to explicitly model their expectations regarding the relationships among parameters. An important software tool for this framework is restriktor'. The mmirestriktor package provides shiny web applications to implement some of the basic functionality of restriktor'. The mmirestriktor() function launches a shiny application for fitting and analyzing models with constraints. The FbarCards() function launches a card game application which can help build intuition about informative hypothesis testing. The iht_interpreter() helps interpret informative hypothesis testing results based on guidelines in Vanbrabant and Rosseel (2020) <doi:10.4324/9780429273872-14>.

r-multivariance 2.4.1
Propagated dependencies: r-rcpp@1.0.13-1 r-microbenchmark@1.5.0 r-igraph@2.1.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=multivariance
Licenses: GPL 3
Synopsis: Measuring Multivariate Dependence Using Distance Multivariance
Description:

Distance multivariance is a measure of dependence which can be used to detect and quantify dependence of arbitrarily many random vectors. The necessary functions are implemented in this packages and examples are given. It includes: distance multivariance, distance multicorrelation, dependence structure detection, tests of independence and copula versions of distance multivariance based on the Monte Carlo empirical transform. Detailed references are given in the package description, as starting point for the theoretic background we refer to: B. Böttcher, Dependence and Dependence Structures: Estimation and Visualization Using the Unifying Concept of Distance Multivariance. Open Statistics, Vol. 1, No. 1 (2020), <doi:10.1515/stat-2020-0001>.

r-mortalitygaps 1.0.7
Propagated dependencies: r-rdpack@2.6.1 r-pbapply@1.7-2 r-mass@7.3-61 r-forecast@8.23.0 r-crch@1.2-2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/mpascariu/MortalityGaps
Licenses: GPL 3
Synopsis: The Double-Gap Life Expectancy Forecasting Model
Description:

Life expectancy is highly correlated over time among countries and between males and females. These associations can be used to improve forecasts. Here we have implemented a method for forecasting female life expectancy based on analysis of the gap between female life expectancy in a country compared with the record level of female life expectancy in the world. Second, to forecast male life expectancy, the gap between male life expectancy and female life expectancy in a country is analysed. We named this method the Double-Gap model. For a detailed description of the method see Pascariu et al. (2018). <doi:10.1016/j.insmatheco.2017.09.011>.

r-semicomprisks 3.4
Propagated dependencies: r-survival@3.7-0 r-mass@7.3-61 r-formula@1.2-5
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SemiCompRisks
Licenses: GPL 2+
Synopsis: Hierarchical Models for Parametric and Semi-Parametric Analyses of Semi-Competing Risks Data
Description:

Hierarchical multistate models are considered to perform the analysis of independent/clustered semi-competing risks data. The package allows to choose the specification for model components from a range of options giving users substantial flexibility, including: accelerated failure time or proportional hazards regression models; parametric or non-parametric specifications for baseline survival functions and cluster-specific random effects distribution; a Markov or semi-Markov specification for terminal event following non-terminal event. While estimation is mainly performed within the Bayesian paradigm, the package also provides the maximum likelihood estimation approach for several parametric models. The package also includes functions for univariate survival analysis as complementary analysis tools.

r-hardyweinberg 1.7.8
Propagated dependencies: r-mice@3.16.0 r-nnet@7.3-19 r-rcpp@1.0.13-1 r-rsolnp@1.16 r-shape@1.4.6.1
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://cran.r-project.org/package=HardyWeinberg
Licenses: GPL 2+
Synopsis: Statistical tests and graphics for Hardy-Weinberg equilibrium
Description:

This package contains tools for exploring Hardy-Weinberg equilibrium for diallelic genetic marker data. All classical tests (chi-square, exact, likelihood-ratio and permutation tests) for Hardy-Weinberg equilibrium are included in the package, as well as functions for power computation and for the simulation of marker data under equilibrium and disequilibrium. Routines for dealing with markers on the X-chromosome are included. Functions for testing equilibrium in the presence of missing data by using multiple imputation are also provided. Implements several graphics for exploring the equilibrium status of a large set of diallelic markers: ternary plots with acceptance regions, log-ratio plots and Q-Q plots.

r-archaeophases 2.0
Propagated dependencies: r-arkhe@1.10.0 r-aion@1.4.0
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://ArchaeoStat.github.io/ArchaeoPhases/
Licenses: GPL 3+
Synopsis: Post-Processing of Markov Chain Monte Carlo Simulations for Chronological Modelling
Description:

Statistical analysis of archaeological dates and groups of dates. This package allows to post-process Markov Chain Monte Carlo (MCMC) simulations from ChronoModel <https://chronomodel.com/>, Oxcal <https://c14.arch.ox.ac.uk/oxcal.html> or BCal <https://bcal.shef.ac.uk/>. It provides functions for the study of rhythms of the long term from the posterior distribution of a series of dates (tempo and activity plot). It also allows the estimation and visualization of time ranges from the posterior distribution of groups of dates (e.g. duration, transition and hiatus between successive phases) as described in Philippe and Vibet (2020) <doi:10.18637/jss.v093.c01>.

Page: 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511
Total results: 36249