Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions for calculating species richness for rarefaction and extrapolation, primarily non-parametric species richness such as jackknife, Chao1, and ACE. Also available are functions for plotting species richness and extrapolation curves, and computing standard diversity and entropy indices.
Sentiment Analysis via deep learning and gradient boosting models with a lot of the underlying hassle taken care of to make the process as simple as possible. In addition to out-performing traditional, lexicon-based sentiment analysis (see <https://benwiseman.github.io/sentiment.ai/#Benchmarks>), it also allows the user to create embedding vectors for text which can be used in other analyses. GPU acceleration is supported on Windows and Linux.
By binding R functions and the Highcharts <http://www.highcharts.com/> charting library, sankeywheel package provides a simple way to draw dependency wheels and sankey diagrams.
An implementation of the stratification index proposed by Zhou (2012) <DOI:10.1177/0081175012452207>. The package provides two functions, srank, which returns stratum-specific information, including population share and average percentile rank; and strat, which returns the stratification index and its approximate standard error. When a grouping factor is specified, strat also provides a detailed decomposition of the overall stratification into between-group and within-group components.
Automates common plotting tasks to ease data exploration. Makes density plots (potentially overlaid on histograms), scatter plots with prediction lines, or bar or line plots with error bars. For each type, y, or x and y variables can be plotted at levels of other variables, all with minimal specification.
R version of scperturb tool for single-cell perturbation analysis. Contains wrappers for performing E-statistics for Seurat objects. More details on the method can be found in Peidli et al. (2023) <doi:10.1101/2022.08.20.504663> and in Székely and Rizzo (2004).
Implementation of evolutionary fuzzy systems for the data mining task called "subgroup discovery". In particular, the algorithms presented in this package are: M. J. del Jesus, P. Gonzalez, F. Herrera, M. Mesonero (2007) <doi:10.1109/TFUZZ.2006.890662> M. J. del Jesus, P. Gonzalez, F. Herrera (2007) <doi:10.1109/MCDM.2007.369416> C. J. Carmona, P. Gonzalez, M. J. del Jesus, F. Herrera (2010) <doi:10.1109/TFUZZ.2010.2060200> C. J. Carmona, V. Ruiz-Rodado, M. J. del Jesus, A. Weber, M. Grootveld, P. González, D. Elizondo (2015) <doi:10.1016/j.ins.2014.11.030> It also provide a Shiny App to ease the analysis. The algorithms work with data sets provided in KEEL, ARFF and CSV format and also with data.frame objects.
Simulate survival times from standard parametric survival distributions (exponential, Weibull, Gompertz), 2-component mixture distributions, or a user-defined hazard, log hazard, cumulative hazard, or log cumulative hazard function. Baseline covariates can be included under a proportional hazards assumption. Time dependent effects (i.e. non-proportional hazards) can be included by interacting covariates with linear time or a user-defined function of time. Clustered event times are also accommodated. The 2-component mixture distributions can allow for a variety of flexible baseline hazard functions reflecting those seen in practice. If the user wishes to provide a user-defined hazard or log hazard function then this is possible, and the resulting cumulative hazard function does not need to have a closed-form solution. For details see the supporting paper <doi:10.18637/jss.v097.i03>. Note that this package is modelled on the survsim package available in the Stata software (see Crowther and Lambert (2012) <https://www.stata-journal.com/sjpdf.html?articlenum=st0275> or Crowther and Lambert (2013) <doi:10.1002/sim.5823>).
This package provides functions and data sets for data sharpening. Nonparametric regressions are computed subject to smoothness and other kinds of penalties.
Improves the interpretation of the Standardized Precipitation Index under changing climate conditions. The package uses the nonstationary approach proposed in Blain et al. (2022) <doi:10.1002/joc.7550> to detect trends in rainfall quantities and to quantify the effect of such trends on the probability of a drought event occurring.
Plots survival models from the survival package. Additionally, it plots curves of multistate models from the mstate package. Typically, a plot is drawn by the sequence survplot(), confIntArea(), survCurve() and nrAtRisk(). The separation of the plot in this 4 functions allows for great flexibility to make a custom plot for publication.
This package provides a fast implementation of the weighted information similarity aggregation (WISE) test for detecting serial dependence, particularly suited for high-dimensional and non-Euclidean time series. Includes functions for constructing similarity matrices and conducting hypothesis testing. Users can use different similarity measures and define their own weighting schemes. For more details see Q Zhu, M Liu, Y Han, D Zhou (2025) <doi:10.48550/arXiv.2509.05678>.
Constructs a yield curve by the Smith-Wilson method from a table of libor and swap rates. Now updated to take bond coupons and prices in the same table.
This package implements different kinds of bootstraps to estimate sampling variation from survey data with complex designs. Includes the rescaled bootstrap described in Rust and Rao (1996) <doi:10.1177/096228029600500305> and Rao and Wu (1988) <doi:10.1080/01621459.1988.10478591>.
Feature screening is a powerful tool in processing ultrahigh dimensional data. It attempts to screen out most irrelevant features in preparation for a more elaborate analysis. Xu and Chen (2014)<doi:10.1080/01621459.2013.879531> proposed an effective screening method SMLE, which naturally incorporates the joint effects among features in the screening process. This package provides an efficient implementation of SMLE-screening for high-dimensional linear, logistic, and Poisson models. The package also provides a function for conducting accurate post-screening feature selection based on an iterative hard-thresholding procedure and a user-specified selection criterion.
This package provides functions for simplified emulation of time series computer model output in model parameter space using Gaussian processes. Stilt can be used more generally for Kriging of spatio-temporal fields. There are functions to predict at new parameter settings, to test the emulator using cross-validation (which includes information on 95% confidence interval empirical coverage), and to produce contour plots over 2D slices in model parameter space.
Efficient design matrix free procedure for solving a soft maximin problem for large scale array-tensor structured models, see Lund, Mogensen and Hansen (2019) <arXiv:1805.02407>. Currently Lasso and SCAD penalized estimation is implemented.
This package contains human behaviour datasets collected by the SAMPLING project (<https://sampling.warwick.ac.uk>).
Create carousels using the JavaScript library Swiper and the package htmlwidgets'. The carousels can be displayed in the RStudio viewer pane, in Shiny applications and in R markdown documents. The package also provides a RStudio addin allowing to choose image files and to display them in the viewer pane.
Fast computation of multivariate analyses of small (10s to 100s markers) to big (1000s to 100000s) genotype data. Runs Principal Component Analysis allowing for centering, z-score standardization and scaling for genetic drift, projection of ancient samples to modern genetic space and multivariate tests for differences in group location (Permutation-Based Multivariate Analysis of Variance) and dispersion (Permutation-Based Multivariate Analysis of Dispersion).
Plots that illustrate the flow of information or material.
Please see the shinytest to shinytest2 migration guide at <https://rstudio.github.io/shinytest2/articles/z-migration.html>.
Optimized prediction based on textual sentiment, accounting for the intrinsic challenge that sentiment can be computed and pooled across texts and time in various ways. See Ardia et al. (2021) <doi:10.18637/jss.v099.i02>.
This package provides a time series causal inference model for Randomized Controlled Trial (RCT) under spillover effect. SPORTSCausal (Spillover Time Series Causal Inference) separates treatment effect and spillover effect from given responses of experiment group and control group by predicting the response without treatment. It reports both effects by fitting the Bayesian Structural Time Series (BSTS) model based on CausalImpact', as described in Brodersen et al. (2015) <doi:10.1214/14-AOAS788>.