Rlwrap is a 'readline wrapper', a small utility that uses the GNU readline library to allow the editing of keyboard input for any command. You should consider rlwrap especially when you need user-defined completion (by way of completion word lists) and persistent history, or if you want to program `special effects' using the filter mechanism.
Assists researchers and output checkers by distinguishing between research output that is safe to publish, output that requires further analysis, and output that cannot be published because of substantial disclosure risk. A paper about the tool was presented at the UNECE Expert Meeting on Statistical Data Confidentiality 2023; see <https://uwe-repository.worktribe.com/output/11060964>.
This package provides a method for automatic detection of peaks in noisy periodic and quasi-periodic signals. This method, called automatic multiscale-based peak detection (AMPD), is based on the calculation and analysis of the local maxima scalogram, a matrix comprising the scale-dependent occurrences of local maxima. For further information see <doi:10.3390/a5040588>.
This package implements the Agnostic Fay-Herriot model, an extension of the traditional small area model. In place of normal sampling errors, the sampling error distribution is estimated with a Gaussian process to accommodate a broader class of distributions. This flexibility is most useful in the presence of bounded, multi-modal, or heavily skewed sampling errors.
Cobb's maximum likelihood method for cusp-catastrophe modeling (Grasman, van der Maas, and Wagenmakers (2009) <doi:10.18637/jss.v032.i08>; Cobb (1981), Behavioral Science, 26(1), 75-78). Includes a cusp()
function for model fitting, and several utility functions for plotting, and for comparing the model to linear regression and logistic curve models.
Create correlation (or partial correlation) matrices. Correlation matrices are formatted with significance stars based on user preferences. Matrices of coefficients, p-values, and number of pairwise observations are returned. Send resultant formatted matrices to the clipboard to be pasted into excel and other programs. A plot method allows users to visualize correlation matrices created with corx'.
Connect to the California Data Exchange Center (CDEC) Web Service <http://cdec.water.ca.gov/>. CDEC provides a centralized database to store, process, and exchange real-time hydrologic information gathered by various cooperators throughout California. The CDEC Web Service <http://cdec.water.ca.gov/dynamicapp/wsSensorData>
provides a data download service for accessing historical records.
This package provides implementation of the generic composite similarity measure (GCSM) described in Liu et al. (2020) <doi:10.1016/j.ecoinf.2020.101169>. The implementation is in C++ and uses RcppArmadillo
'. Additionally, implementations of the structural similarity (SSIM) and the composite similarity measure based on means, standard deviations, and correlation coefficient (CMSC), are included.
This function performs genomic prediction of cross performance using genotype and phenotype data. It processes data in several steps including loading necessary software, converting genotype data, processing phenotype data, fitting mixed models, and predicting cross performance based on weighted marker effects. For more information, see Labroo et al. (2023) <doi:10.1007/s00122-023-04377-z>.
Detection of haplotype patterns that include single nucleotide polymorphisms (SNPs) and non-contiguous haplotypes that are associated with a phenotype. Methods for implementing HTRX are described in Yang Y, Lawson DJ (2023) <doi:10.1093/bioadv/vbad038> and Barrie W, Yang Y, Irving-Pease E.K, et al (2024) <doi:10.1038/s41586-023-06618-z>.
This package provides a Hierarchical Spatial Autoregressive Model (HSAR), based on a Bayesian Markov Chain Monte Carlo (MCMC) algorithm (Dong and Harris (2014) <doi:10.1111/gean.12049>). The creation of this package was supported by the Economic and Social Research Council (ESRC) through the Applied Quantitative Methods Network: Phase II, grant number ES/K006460/1.
Estimate test-retest reliability for complex sampling strategies and extract variances using IntraClass
Effect Decomposition. Developed by Brandmaier et al. (2018) "Assessing reliability in neuroimaging research through intra-class effect decomposition (ICED)" <doi:10.7554/eLife.35718>
Also includes functions to simulate data based on sampling strategy. Unofficial version release name: "Good work squirrels".
Algorithms for multivariate outlier detection when missing values occur. Algorithms are based on Mahalanobis distance or data depth. Imputation is based on the multivariate normal model or uses nearest neighbour donors. The algorithms take sample designs, in particular weighting, into account. The methods are described in Bill and Hulliger (2016) <doi:10.17713/ajs.v45i1.86>.
Download data from Brazil's Origin Destination Surveys. The package covers both data from household travel surveys, dictionaries of variables, and the spatial geometries of surveys conducted in different years and across various urban areas in Brazil. For some cities, the package will include enhanced versions of the data sets with variables "harmonized" across different years.
Historic Pell grant data as provided by the US Department of Education. This package contains data about how much pell grant was awarded by which institution in which year. This data comes from the US Department of Education. Raw data can be downloaded from here: <https://www2.ed.gov/finaid/prof/resources/data/pell-institution.html>.
This package provides a method of clustering functional data using subregion information of the curves. It is intended to supplement the fda and fda.usc packages in functional data object clustering. It also facilitates the printing and plotting of the results in a tree format and limits the partitioning candidates into a specific set of subregions.
The SC-SR Algorithm is used to calculate fully non-parametric and self-consistent estimators of the cause-specific failure probabilities in the presence of interval-censoring and possible making of the failure cause in a competing risks environment. In the version 2.0 the function creating the probability matrix from double-censored data is added.
Create correlation networks using St. Nicolas House Analysis ('SNHA'). The package can be used for visualizing multivariate data similar to Principal Component Analysis or Multidimensional Scaling using a ranking approach. In contrast to MDS and PCA', SNHA uses a network approach to explore interacting variables. For details see Hermanussen et. al. 2021', <doi:10.3390/ijerph18041741>.
Computes the maximum likelihood estimator of the generalised additive and index regression with shape constraints. Each additive component function is assumed to obey one of the nine possible shape restrictions: linear, increasing, decreasing, convex, convex increasing, convex decreasing, concave, concave increasing, or concave decreasing. For details, see Chen and Samworth (2016) <doi:10.1111/rssb.12137>.
Once you've identified a real life place, such as a shop, a restaurant, a bar, etc. use this package to simulate a Google search and retrieve its "Popular Times" and geographic location information and save them in Comma-Separated Values files. This package also downloads a list of restaurants and bars of Ushuaia city, Argentina.
This package provides tools for a wavelet-based approach to analyzing spatial synchrony, principally in ecological data. Some tools will be useful for studying community synchrony. See, for instance, Sheppard et al (2016) <doi: 10.1038/NCLIMATE2991>, Sheppard et al (2017) <doi: 10.1051/epjnbp/2017000>, Sheppard et al (2019) <doi: 10.1371/journal.pcbi.1006744>.
MDQC is a multivariate quality assessment method for microarrays based on quality control (QC) reports. The Mahalanobis distance of an array's quality attributes is used to measure the similarity of the quality of that array against the quality of the other arrays. Then, arrays with unusually high distances can be flagged as potentially low-quality.
Many modern biological datasets consist of small counts that are not well fit by standard linear-Gaussian methods such as principal component analysis. This package provides implementations of count-based feature selection and dimension reduction algorithms. These methods can be used to facilitate unsupervised analysis of any high-dimensional data such as single-cell RNA-seq.
reptyr is a utility for taking an existing running program and attaching it to a new terminal. Started a long-running process over ssh
, but have to leave and don't want to interrupt it? Just start a screen
, use reptyr to grab it, and then kill the ssh
session and head on home.