The package addresses, for LaTeX documents, the severe limitation on the number of output streams that TeX provides. The package uses a single TeX output stream, and writes marked-up output to this stream. The user may then post-process the marked-up output file, using LaTeX, and the document's output appears as separate files, according to the calls made to the package. The output to be post-processed uses macros from the widely-available ProTeX package.
Fit the most popular human mortality laws', and construct full and abridge life tables given various input indices. A mortality law is a parametric function that describes the dying-out process of individuals in a population during a significant portion of their life spans. For a comprehensive review of the most important mortality laws see Tabeau (2001) <doi:10.1007/0-306-47562-6_1>. Practical functions for downloading data from various human mortality databases are provided as well.
Finding the best values for user-specified arguments of a prediction algorithm can be difficult, particularly if there is an interaction between argument levels. This package automates the testing of any user-defined prediction algorithm over an arbitrary number of arguments. It includes functions for testing the algorithm over the given arguments with respect to an arbitrary number of user-defined diagnostics, visualising the results of these tests, and finding the optimal argument combinations with respect to each diagnostic.
This package provides a set of functions leading to multivariate response L1 regression. This includes functions on computing Euclidean inner products and norms, weighted least squares estimates on multivariate responses, function to compute fitted values and residuals. This package is a companion to the book "U-Statistics, M-estimation and Resampling", by Arup Bose and Snigdhansu Chatterjee, to appear in 2017 as part of the "Texts and Readings in Mathematics" (TRIM) series of Hindustan Book Agency and Springer-Verlag.
R generic interface to Hi-C contact matrices in `.(m)cool`, `.hic` or HiC-Pro
derived formats, as well as other Hi-C processed file formats. Contact matrices can be partially parsed using a random access method, allowing a memory-efficient representation of Hi-C data in R. The `HiCExperiment`
class stores the Hi-C contacts parsed from local contact matrix files. `HiCExperiment`
instances can be further investigated in R using the `HiContacts`
analysis package.
Ksoloti is an environment for generating and processing digital audio. It can be a programmable virtual modular synthesizer, polysynth, drone box, sequencer, chord generator, multi effect, sample player, looper, granular sampler, MIDI generator/processor, CV or trigger generator, anything in between, and more.
The Ksoloti Core is a rework of the discontinued Axoloti Core board. In short, Ksoloti aims for maximum compatibility with the original Axoloti, but with some layout changes and added features.
This package provides the runtime.
This LaTeX package executes programming source codes (including all command line tools) from within LaTeX and embeds the output in the resulting .pdf
file. Many programming languages can be easily used and any command-line executable can be invoked when preparing the .pdf
file from a .tex
file. It is however recommended to use this package in server-mode together with the Python talk2stat
package. Currently, this server-mode supports Julia, MatLab, Python, and R.
This package provides a shiny interface for a free, open-source managerial accounting-like system for health care practices. This package allows health care administrators to project revenue with monthly adjustments and procedure-specific boosts up to a 3-year period. Granular data (patient-level) to aggregated data (department- or hospital-level) can all be used as valid inputs provided historical volume and revenue data is available. For more details on managerial accounting techniques, see Brewer et al. (2015, ISBN:9780078025792).
This package provides a function to perform bias diagnostics on linear mixed models fitted with lmer()
from the lme4 package. Implements permutation tests for assessing the bias of fixed effects, as described in Karl and Zimmerman (2021) <doi:10.1016/j.jspi.2020.06.004>. Karl and Zimmerman (2020) <doi:10.17632/tmynggddfm.1> provide R code for implementing the test using mvglmmRank
output. Development of this package was assisted by GPT o1-preview for code structure and documentation.
Calculates autoecological data (optima and tolerance ranges) of a biological species given an environmental matrix. The package calculates by weighted averaging, using the number of occurrences to adjust the tolerance assigned to each taxon to estimate optima and tolerance range in cases where taxa have unequal occurrences. See the detailed methodology by Birks et al. (1990) <doi:10.1098/rstb.1990.0062>, and a case example by Potapova and Charles (2003) <doi:10.1046/j.1365-2427.2003.01080.x>.
The function pointdensity returns a density count and the temporal average for every point in the original list. The dataframe returned includes four columns: lat, lon, count, and date_avg. The "lat" column is the original latitude data; the "lon" column is the original longitude data; the "count" is the density count of the number of points within a radius of radius*grid_size (the neighborhood); and the date_avg column includes the average date of each point in the neighborhood.
Graphical User Interface (via the R-Commander) and utility functions (often based on the vegan package) for statistical analysis of biodiversity and ecological communities, including species accumulation curves, diversity indices, Renyi profiles, GLMs for analysis of species abundance and presence-absence, distance matrices, Mantel tests, and cluster, constrained and unconstrained ordination analysis. A book on biodiversity and community ecology analysis is available for free download from the website. In 2012, methods for (ensemble) suitability modelling and mapping were expanded in the package.
This package provides R6 objects to perform parallelized hyperparameter optimization and cross-validation. Hyperparameter optimization can be performed with Bayesian optimization (via ParBayesianOptimization
<https://cran.r-project.org/package=ParBayesianOptimization>
) and grid search. The optimized hyperparameters can be validated using k-fold cross-validation. Alternatively, hyperparameter optimization and validation can be performed with nested cross-validation. While mlexperiments focuses on core wrappers for machine learning experiments, additional learner algorithms can be supplemented by inheriting from the provided learner base class.
Matching algorithm based on network-flow structure. Users are able to modify the emphasis on three different optimization goals: two different distance measures and the number of treated units left unmatched. The method is proposed by Pimentel and Kelz (2019) <doi:10.1080/01621459.2020.1720693>. The rrelaxiv package, which provides an alternative solver for the underlying network flow problems, carries an academic license and is not available on CRAN, but may be downloaded from Github at <https://github.com/josherrickson/rrelaxiv/>.
This package provides tools for easy exploration of the world ocean atlas of the US agency National Oceanic and Atmospheric Administration (NOAA). It includes functions to extract NetCDF
data from the repository and code to visualize several physical and chemical parameters of the ocean. A Shiny app further allows interactive exploration of the data. The methods for data collecting and quality checks are described in several papers, which can be found here: <https://www.ncei.noaa.gov/products/world-ocean-atlas>.
Inference in a Bayesian framework for a generalised stochastic block model. The generalised stochastic block model (SBM) can capture group structure in network data without requiring conjugate priors on the edge-states. Two sampling methods are provided to perform inference on edge parameters and block structure: a split-merge Markov chain Monte Carlo algorithm and a Dirichlet process sampler. Green, Richardson (2001) <doi:10.1111/1467-9469.00242>; Neal (2000) <doi:10.1080/10618600.2000.10474879>; Ludkin (2019) <arXiv:1909.09421>
.
This package generates ranked lists of differential gene expression for either disease or drug profiles. Input data can be downloaded from Array Express or GEO, or from local CEL files. Ranked lists of differential expression and associated p-values are calculated using Limma. Enrichment scores (Subramanian et al. PNAS 2005) are calculated to a reference set of default drug or disease profiles, or a set of custom data supplied by the user. Network visualisation of significant scores are output in Cytoscape format.
This package contains: 1. A microarray gene expression dataset from a human breast cancer study. 2. A RNA-Seq gene expression dataset from a mouse study on IFNG knockout. 3. ID mapping tables between gene IDs and SBGN-ML file glyph IDs. 4. Percent of orthologs detected in other species of the genes in a pathway. Cutoffs of this percentage for defining if a pathway exists in another species. 5. XML text of SBGN-ML files for all pre-collected pathways.
Add-on package to the airGR
package that simplifies its use and is aimed at being used for teaching hydrology. The package provides 1) three functions that allow to complete very simply a hydrological modelling exercise 2) plotting functions to help students to explore observed data and to interpret the results of calibration and simulation of the GR ('Génie rural') models 3) a Shiny graphical interface that allows for displaying the impact of model parameters on hydrographs and models internal variables.
This package provides an efficient suite of R tools for scorecard modeling, analysis, and visualization. Including equal frequency binning, equidistant binning, K-means binning, chi-square binning, decision tree binning, data screening, manual parameter modeling, fully automatic generation of scorecards, etc. This package is designed to make scorecard development easier and faster. References include: 1. <http://shichen.name/posts/>. 2. Dong-feng Li(Peking University),Class PPT. 3. <https://zhuanlan.zhihu.com/p/389710022>. 4. <https://www.zhangshengrong.com/p/281oqR9JNw/>
.
Utilities for handling dates and times, such as selecting particular days of the week or month, formatting timestamps as required by RSS feeds, or converting timestamp representations of other software (such as MATLAB and Excel') to R. The package is lightweight (no dependencies, pure R implementations) and relies only on R's standard classes to represent dates and times ('Date and POSIXt'); it aims to provide efficient implementations, through vectorisation and the use of R's native numeric representations of timestamps where possible.
Offers a rich and diverse collection of datasets focused on the brain, nervous system, and related disorders. The package includes clinical, experimental, neuroimaging, behavioral, cognitive, and simulated data on conditions such as Parkinson's disease, Alzheimer's, epilepsy, schizophrenia, gliomas, and mental health. Datasets cover structural and functional brain data, neurotransmission, gene expression, cognitive performance, and treatment outcomes. Designed for researchers, neuroscientists, clinicians, psychologists, data scientists, and students, this package facilitates exploratory data analysis, statistical modeling, and hypothesis testing in neuroscience and neuroepidemiology.
Trading of Condor Options Strategies is represented here through their Graphs. The graphic indicators, strategies, calculations, functions and all the discussions are for academic, research, and educational purposes only and should not be construed as investment advice and come with absolutely no Liability. Guy Cohen (â The Bible of Options Strategies (2nd ed.)â , 2015, ISBN: 9780133964028). Zura Kakushadze, Juan A. Serur (â 151 Trading Strategiesâ , 2018, ISBN: 9783030027919). John C. Hull (â Options, Futures, and Other Derivatives (11th ed.)â , 2022, ISBN: 9780136939979).
Analyse time to event data with two time scales by estimating a smooth hazard that varies over two time scales and also, if covariates are available, to estimate a proportional hazards model with such a two-dimensional baseline hazard. Functions are provided to prepare the raw data for estimation, to estimate and to plot the two-dimensional smooth hazard. Extension to a competing risks model are implemented. For details about the method please refer to Carollo et al. (2024) <doi:10.1002/sim.10297>.