Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a lightweight tool that provides a reproducible workflow for selecting and executing appropriate statistical analysis in one-way or two-way experimental designs. The package automatically checks for data normality, conducts parametric (ANOVA) or non-parametric (Kruskal-Wallis) tests, performs post-hoc comparisons with Compact Letter Displays (CLD), and generates publication-ready boxplots, faceted plots, and heatmaps. It is designed for researchers seeking fast, automated statistical summaries and visualization. Based on established statistical methods including Shapiro and Wilk (1965) <doi:10.2307/2333709>, Kruskal and Wallis (1952) <doi:10.1080/01621459.1952.10483441>, Tukey (1949) <doi:10.2307/3001913>, Fisher (1925) <ISBN:0050021702>, and Wickham (2016) <ISBN:978-3-319-24277-4>.
Various self-controlled case series models used to investigate associations between time-varying exposures such as vaccines or other drugs or non drug exposures and an adverse event can be fitted. Detailed information on the self-controlled case series method and its extensions with more examples can be found in Farrington, P., Whitaker, H., and Ghebremichael Weldeselassie, Y. (2018, ISBN: 978-1-4987-8159-6. Self-controlled Case Series studies: A modelling Guide with R. Boca Raton: Chapman & Hall/CRC Press) and <https://sccs-studies.info/index.html>.
This package provides functions for statistical analysis of point processes.
Conduct latent trajectory class analysis with longitudinal data. Our method supports longitudinal continuous, binary and count data. For more methodological details, please refer to Hart, K.R., Fei, T. and Hanfelt, J.J. (2020), Scalable and robust latent trajectory class analysis using artificial likelihood. Biometrics <doi:10.1111/biom.13366>.
This package provides tools to simulate realistic raw case data for an epidemic in the form of line lists and contacts using a branching process. Simulated outbreaks are parameterised with epidemiological parameters and can have age-structured populations, age-stratified hospitalisation and death risk and time-varying case fatality risk.
Offers a helping hand to psychologists and other behavioral scientists who routinely deal with experimental data from factorial experiments. It includes several functions to format output from other R functions according to the style guidelines of the APA (American Psychological Association). This formatted output can be copied directly into manuscripts to facilitate data reporting. These features are backed up by a toolkit of several small helper functions, e.g., offering out-of-the-box outlier removal. The package lends its name to Georg "Schorsch" Schuessler, ingenious technician at the Department of Psychology III, University of Wuerzburg. For details on the implemented methods, see Roland Pfister and Markus Janczyk (2016) <doi: 10.20982/tqmp.12.2.p147>.
This package provides tools to compute and analyze the set of statistically-equivalent (Gaussian, linear) path models which generate the input precision or (partial) correlation matrix. This procedure is useful for understanding how statistical network models such as the Gaussian Graphical Model (GGM) perform as causal discovery tools. The statistical-equivalence set of a given GGM expresses the uncertainty we have about the sign, size and direction of directed relationships based on the weights matrix of the GGM alone. The derivation of the equivalence set and its use for understanding GGMs as causal discovery tools is described by Ryan, O., Bringmann, L.F., & Schuurman, N.K. (2022) <doi: 10.31234/osf.io/ryg69>.
This package provides functions for fitting a sparse partial least squares (SPLS) regression and classification (Chun and Keles (2010) <doi:10.1111/j.1467-9868.2009.00723.x>).
Selection index is one of the efficient and acurrate method for selection of animals. This package is useful for construction of selection indices. It uses mixed and random model least squares analysis to estimate the heritability of traits and genetic correlation between traits. The package uses the sire model as it is considered as random effect. The genetic and phenotypic (co)variances along with the relative economic values are used to construct the selection index for any number of traits. It also estimates the accuracy of the index and the genetic gain expected for different traits. Fisher (1936) <doi:10.1111/j.1469-1809.1936.tb02137.x>.
Add a searchbar widget to your Shiny application. The widget quickly integrates with any existing element containing text to highlight matches. Highlighting is done with the JavaScript library mark.js'. The widget includes buttons to cycle through multiple instances of the match and automatically scroll to the matches in an overflow element (or window). The widget also displays the total number of matches and which match is currently being cycled through. The widget is structured as a Bootstrap 3 input group.
The Subsemble algorithm is a general subset ensemble prediction method, which can be used for small, moderate, or large datasets. Subsemble partitions the full dataset into subsets of observations, fits a specified underlying algorithm on each subset, and uses a unique form of k-fold cross-validation to output a prediction function that combines the subset-specific fits. An oracle result provides a theoretical performance guarantee for Subsemble. The paper, "Subsemble: An ensemble method for combining subset-specific algorithm fits" is authored by Stephanie Sapp, Mark J. van der Laan & John Canny (2014) <doi:10.1080/02664763.2013.864263>.
Provide utilities to work with solar time, i.e. where noon is exactly when sun culminates. Provides functions for computing sun position and times of sunrise and sunset.
Reimplementation of the svDialogs dialog boxes in Tcl/Tk.
This package provides a simple function that anonymises a list of variables in a consistent way: anonymised factors are not recycled and the same original levels receive the same anonymised factor even if located in different datasets.
Using the adjustment method from Benjamini & Hochberg (1995) <doi:10.1111/j.2517-6161.1995.tb02031.x>, this package determines which variables are significant under repeated testing with a given dataframe of p values and an user defined "q" threshold. It then returns the original dataframe along with a significance column where an asterisk denotes a significant p value after FDR calculation, and NA denotes all other p values. This package uses the Benjamini & Hochberg method specifically as described in Lee, S., & Lee, D. K. (2018) <doi:10.4097/kja.d.18.00242>.
This package provides an imputation pipeline for single-cell RNA sequencing data. The scISR method uses a hypothesis-testing technique to identify zero-valued entries that are most likely affected by dropout events and estimates the dropout values using a subspace regression model (Tran et.al. (2022) <DOI:10.1038/s41598-022-06500-4>).
This package provides a scalable Gibbs sampling implementation for high dimensional Bayesian regression with the continuous spike-and-slab prior. Niloy Biswas, Lester Mackey and Xiao-Li Meng, "Scalable Spike-and-Slab" (2022) <arXiv:2204.01668>.
Computes the probability of a set of species abundances of a single or multiple samples of individuals with one or more guilds under a mainland-island model. One must specify the mainland (metacommunity) model and the island (local) community model. It assumes that species fluctuate independently. The package also contains functions to simulate under this model. See Haegeman, B. & R.S. Etienne (2017). A general sampling formula for community structure data. Methods in Ecology & Evolution 8: 1506-1519 <doi:10.1111/2041-210X.12807>.
This package provides functions for computing split regularized estimators defined in Christidis, Lakshmanan, Smucler and Zamar (2019) <doi:10.48550/arXiv.1712.03561>. The approach fits linear regression models that split the set of covariates into groups. The optimal split of the variables into groups and the regularized estimation of the regression coefficients are performed by minimizing an objective function that encourages sparsity within each group and diversity among them. The estimated coefficients are then pooled together to form the final fit.
Simulation methods to study the effect of management policies on efforts to restore populations back to their original genetic composition. Allows for single-scenario simulation and for optimization of specific chosen scenarios. Further information can be found in Hernandez, Janzen and Lavretsky (2023) <doi:10.1111/1755-0998.13892>.
This package provides functions for stabilometric signal quantification. The input is a data frame containing the x, y coordinates of the center-of-pressure displacement. Jose Magalhaes de Oliveira (2017) <doi:10.3758/s13428-016-0706-4> "Statokinesigram normalization method"; T E Prieto, J B Myklebust, R G Hoffmann, E G Lovett, B M Myklebust (1996) <doi:10.1109/10.532130> "Measures of postural steadiness: Differences between healthy young and elderly adults"; L F Oliveira et al (1996) <doi:10.1088/0967-3334/17/4/008> "Calculation of area of stabilometric signals using principal component analisys".
Set of tools to fit a semi-parametric regression model suitable for analysis of data sets in which the response variable is continuous, strictly positive, asymmetric and possibly, censored. Under this setup, both the median and the skewness of the response variable distribution are explicitly modeled by using semi-parametric functions, whose non-parametric components may be approximated by natural cubic splines or P-splines. Supported distributions for the model error include log-normal, log-Student-t, log-power-exponential, log-hyperbolic, log-contaminated-normal, log-slash, Birnbaum-Saunders and Birnbaum-Saunders-t distributions.
This package performs a sentiment analysis of textual contents in R. This implementation utilizes various existing dictionaries, such as Harvard IV, or finance-specific dictionaries. Furthermore, it can also create customized dictionaries. The latter uses LASSO regularization as a statistical approach to select relevant terms based on an exogenous response variable.
Suns-Voc (or Isc-Voc) curves can provide the current-voltage (I-V) characteristics of the diode of photovoltaic cells without the effect of series resistance. Here, Suns-Voc curves can be constructed with outdoor time-series I-V curves [1,2,3] of full-size photovoltaic (PV) modules instead of having to be measured in the lab. Time series of four different power loss modes can be calculated based on obtained Isc-Voc curves. This material is based upon work supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under Solar Energy Technologies Office (SETO) Agreement Number DE-EE0008172. Jennifer L. Braid is supported by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy administered by the Oak Ridge Institute for Science and Education (ORISE) for the DOE. ORISE is managed by Oak Ridge Associated Universities (ORAU) under DOE contract number DE-SC0014664. [1] Wang, M. et al, 2018. <doi:10.1109/PVSC.2018.8547772>. [2] Walters et al, 2018 <doi:10.1109/PVSC.2018.8548187>. [3] Guo, S. et al, 2016. <doi:10.1117/12.2236939>.