Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a collection of functions to simulate luminescence signals in quartz and Al2O3 based on published models.
Upload R data.frame to Arm Treasure Data, see <https://www.treasuredata.com/>. You can execute database or table handling for resources on Arm Treasure Data.
This package provides a programmatic interface to openfisheries.org'. This package is part of the rOpenSci suite (http://ropensci.org).
Building interactive web applications with R is incredibly easy with shiny'. Behind the scenes, shiny builds a reactive graph that can quickly become intertwined and difficult to debug. reactlog (Schloerke 2019) <doi:10.5281/zenodo.2591517> provides a visual insight into that black box of shiny reactivity by constructing a directed dependency graph of the application's reactive state at any time point in a reactive recording.
Ensemble model, for classification, regression and unsupervised learning, based on a forest of unpruned and randomized binary decision trees. Each tree is grown by sampling, with replacement, a set of variables at each node. Each cut-point is generated randomly, according to the continuous Uniform distribution. For each tree, data are either bootstrapped or subsampled. The unsupervised mode introduces clustering, dimension reduction and variable importance, using a three-layer engine. Random Uniform Forests are mainly aimed to lower correlation between trees (or trees residuals), to provide a deep analysis of variable importance and to allow native distributed and incremental learning.
Native R only allows PDF exports of reference manuals. The Rd2md package converts the package documentation files into markdown files and combines them into a markdown version of the package reference manual.
Rcmdr interface to the sos package. The plug-in renders the sos searching functionality easily accessible via the Rcmdr menus. It also simplifies the task of performing multiple searches and subsequently obtaining the union or the intersection of the results.
Interface for multiple data sources, such as the `EDDS` API <https://evds2.tcmb.gov.tr/index.php?/evds/userDocs> of the Central Bank of the Republic of Türkiye and the `FRED` API <https://fred.stlouisfed.org/docs/api/fred/> of the Federal Reserve Bank. Both data providers require API keys for access, which users can easily obtain by creating accounts on their respective websites. The package provides caching ability with the selection of periods to increase the speed and efficiency of requests. It combines datasets requested from different sources, helping users when the data has common frequencies. While combining data frames whenever possible, it also keeps all requested data available as separate data frames to increase efficiency.
This package provides functionality for carrying out sample size estimation and power calculation in Respondent-Driven Sampling.
We visualize the standard deviation of a data set as the radius of a cylinder whose volume equals the total volume of several cylinders made by revolving the empirical cumulative distribution function about the vertical line through the mean. For more details see Sarkar and Rashid (2016) <doi:10.1080/00031305.2016.1165734>.
Function to read and write the Stata file format.
This package provides a Minimal Example Package which demonstrates mlpack use via C++ Code from R.
This package provides an interface to Mapzen'-based APIs (including geocode.earth, Nextzen, and NYC GeoSearch) for geographic search and geocoding, isochrone calculation, and vector data to draw map tiles. See <https://www.mapzen.com/documentation/> for more information. The original Mapzen has gone out of business, but rmapzen can be set up to work with any provider who implements the Mapzen API.
Converts elements of roxygen documentation to markdown'.
In order to facilitate R instruction for actuaries, we have organized several sets of publicly available data of interest to non-life actuaries. In addition, we suggest a set of packages, which most practicing actuaries will use routinely. Finally, there is an R markdown skeleton for basic reserve analysis.
The package contains all the data sets related to the book written by the maintainer of the package.
Robust methods for estimating the parameters of multivariate Gaussian linear models.
Fits a multivariate value-added model (VAM), see Broatch, Green, and Karl (2018) <doi:10.32614/RJ-2018-033> and Broatch and Lohr (2012) <doi:10.3102/1076998610396900>, with normally distributed test scores and a binary outcome indicator. A pseudo-likelihood approach, Wolfinger (1993) <doi:10.1080/00949659308811554>, is used for the estimation of this joint generalized linear mixed model. The inner loop of the pseudo-likelihood routine (estimation of a linear mixed model) occurs in the framework of the EM algorithm presented by Karl, Yang, and Lohr (2013) <DOI:10.1016/j.csda.2012.10.004>. This material is based upon work supported by the National Science Foundation under grants DRL-1336027 and DRL-1336265.
This tool enables the user to choose a randomization procedure based on sound scientific criteria. It comprises the generation of randomization sequences as well the assessment of randomization procedures based on carefully selected criteria. Furthermore, randomizeR provides a function for the comparison of randomization procedures.
QuantLib bindings are provided for R using Rcpp via an updated variant of the header-only Quantuccia project (put together initially by Peter Caspers) offering an essential subset of QuantLib (and now maintained separately for the calendaring subset). See the included file AUTHORS for a full list of contributors to both QuantLib and Quantuccia'. Note that this package provided an initial viability proof, current work is done (via approximately quarterly releases tracking QuantLib') in the smaller package qlcal which is generally preferred.
Estimates the p-probability return curve proposed by Murphy-Barltrop et al. (2023) <doi:10.1002/env.2797>. Implements pointwise and smooth estimation of the angular dependence function introduced by Wadsworth and Tawn (2013) <doi:10.3150/12-BEJ471>.
Data sets are often corrupted by outliers. When data are multivariate outliers can be classified as case-wise or cell-wise. The latters are particularly challenge to handle. We implement a robust estimation procedure for Seemingly Unrelated Regression Models which is able to cope well with both type of outliers. Giovanni Saraceno, Fatemah Alqallaf, Claudio Agostinelli (2021) <doi:10.48550/arXiv.2107.00975>.
Plot rpart models. Extends plot.rpart() and text.rpart() in the rpart package.
The SPRITE algorithm creates possible distributions of discrete responses based on reported sample parameters, such as mean, standard deviation and range (Heathers et al., 2018, <doi:10.7287/peerj.preprints.26968v1>). This package implements it, drawing heavily on the code for Nick Brown's rSPRITE Shiny app <https://shiny.ieis.tue.nl/sprite/>. In addition, it supports the modeling of distributions based on multi-item (Likert-type) scales and the use of restrictions on the frequency of particular responses.