Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Interoperability between Rcpp and the C++11 array and tuple types. Linking to this package allows fixed-length std::array objects to be converted to and from equivalent R vectors, and std::tuple objects converted to lists, via the as() and wrap() functions. There is also experimental support for std::span from C++20'.
Researchers commonly need to summarize scientific information, a process known as evidence synthesis'. The first stage of a synthesis process (such as a systematic review or meta-analysis) is to download a list of references from academic search engines such as Web of Knowledge or Scopus'. The traditional approach to systematic review is then to sort these data manually, first by locating and removing duplicated entries, and then screening to remove irrelevant content by viewing titles and abstracts (in that order). revtools provides interfaces for each of these tasks. An alternative approach, however, is to draw on tools from machine learning to visualise patterns in the corpus. In this case, you can use revtools to render ordinations of text drawn from article titles, keywords and abstracts, and interactively select or exclude individual references, words or topics.
The Diceware method can be used to generate strong passphrases. In short, you roll a 6-faced dice 5 times in a row, the number obtained is matched against a dictionary of easily remembered words. By combining together 7 words thus generated, you obtain a password that is relatively easy to remember, but would take several millions years (on average) for a powerful computer to guess.
To incorporate neighbor genotypic identity into genome-wide association studies, the package provides a set of functions for variation partitioning and association mapping. The theoretical background of the method is described in Sato et al. (2021) <doi:10.1038/s41437-020-00401-w>.
This package performs species distribution modeling for rare species with unprecedented accuracy (Mondanaro et al., 2023 <doi:10.1111/2041-210X.14066>) and finds the area of origin of species and past contact between them taking climatic variability in full consideration (Mondanaro et al., 2025 <doi:10.1111/2041-210X.14478>).
An implementation of a number of Global Trend models for time series forecasting that are Bayesian generalizations and extensions of some Exponential Smoothing models. The main differences/additions include 1) nonlinear global trend, 2) Student-t error distribution, and 3) a function for the error size, so heteroscedasticity. The methods are particularly useful for short time series. When tested on the well-known M3 dataset, they are able to outperform all classical time series algorithms. The models are fitted with MCMC using the rstan package.
Create and combine HTML and PDF reports from within R. Possibility to design tables and listings for reporting and also include R plots.
Non-linear inversion for hypocenter estimation and analysis of seismic data collected continuously, or in trigger mode. The functions organize other functions from RSEIS and GEOmap to help researchers pick, locate, and store hypocenters for detailed seismic investigation. Error ellipsoids and station influence are estimated via jackknife analysis. References include Iversen, E. S., and J. M. Lees (1996)<doi:10.1785/BSSA0860061853>.
This RSKC package contains a function RSKC which runs the robust sparse K-means clustering algorithm.
Simplify the process of extracting and processing Clinical Practice Research Datalink (CPRD) data in order to build datasets ready for statistical analysis. This process is difficult in R', as the raw data is very large and cannot be read into the R workspace. rcprd utilises RSQLite to create SQLite databases which are stored on the hard disk. These are then queried to extract the required information for a cohort of interest, and create datasets ready for statistical analysis. The processes follow closely that from the rEHR package, see Springate et al., (2017) <doi:10.1371/journal.pone.0171784>.
The Bayesian modelling of relative sea-level data using a comprehensive approach that incorporates various statistical models within a unifying framework. Details regarding each statistical models; linear regression (Ashe et al 2019) <doi:10.1016/j.quascirev.2018.10.032>, change point models (Cahill et al 2015) <doi:10.1088/1748-9326/10/8/084002>, integrated Gaussian process models (Cahill et al 2015) <doi:10.1214/15-AOAS824>, temporal splines (Upton et al 2023) <arXiv:2301.09556>, spatio-temporal splines (Upton et al 2023) <arXiv:2301.09556> and generalised additive models (Upton et al 2023) <arXiv:2301.09556>. This package facilitates data loading, model fitting and result summarisation. Notably, it accommodates the inherent measurement errors found in relative sea-level data across multiple dimensions, allowing for their inclusion in the statistical models.
Connection to the Redis (or Valkey') key/value store using the C-language client library hiredis (included as a fallback) with MsgPack encoding provided via RcppMsgPack headers. It now also includes the pub/sub functions from the rredis package.
Includes Resourcecode hindcast database (see <https://resourcecode.ifremer.fr>) configuration data: nodes locations for both the sea-state parameters and the spectra data; examples of time series of 1D and 2D surface elevation variance spectral density.
This package provides XML parsing capability through the Rapidxml C++ header-only library.
Uses an indirect method based on truncated quantile-quantile plots to estimate reference limits from routine laboratory data: Georg Hoffmann and colleagues (2024) <doi: 10.3390/jcm13154397>. The principle of the method was developed by Robert G Hoffmann (1963) <doi:10.1001/jama.1963.03060110068020> and modified by Georg Hoffmann and colleagues (2015) <doi:10.1515/labmed-2015-0104>, and Frank Klawonn and colleagues (2020) <doi:10.1515/labmed-2020-0005>, (2022) <doi:10.1007/978-3-031-15509-3_31>.
This package provides a toolkit for the analysis of paths from spatial tracking experiments and calculation of goal-finding strategies. This package is centered on an approach using machine learning for path classification.
Sample size and confidence interval calculations in reversible catalytic models, with applications in malaria research. Further details can be found in the paper by Sepúlveda and Drakeley (2015, <doi:10.1186/s12936-015-0661-z>).
This package provides a toolbox created by members of the International Union for Conservation of Nature (IUCN) Red List of Ecosystems Committee for Scientific Standards. Primarily, it is a set of tools suitable for calculating the metrics required for making assessments of species and ecosystems against the IUCN Red List of Threatened Species and the IUCN Red List of Ecosystems categories and criteria. See the IUCN website for detailed guidelines, the criteria, publications and other information.
Estimate the percentage of seeds in a seedlot that contain stacks of genetically modified traits. Estimates are calculated using a multinomial group testing model with maximum likelihood estimation of the parameters.
Manually bin data using weight of evidence and information value. Includes other binning methods such as equal length, quantile and winsorized. Options for combining levels of categorical data are also available. Dummy variables can be generated based on the bins created using any of the available binning methods. References: Siddiqi, N. (2006) <doi:10.1002/9781119201731.biblio>.
This package provides and extends the Fuzzy Coco algorithm by wrapping the FuzzyCoCo C++ Library, cf <https://github.com/Lonza-RND-Data-Science/fuzzycoco>. Fuzzy Coco constructs systems that predict the outcome of a human decision-making process while providing an understandable explanation of a possible reasoning leading to it. The constructed fuzzy systems are composed of rules and linguistic variables. This package provides a S3 classic interface (fit_xy()/fit()/predict()/evaluate()) and a tidymodels'/'parsnip interface, a custom engine with custom iteration stop criterion and progress bar support as well as a systematic implementation that do not rely on genetic programming but rather explore all possible combinations.
Yandex Translate (https://translate.yandex.com/) is a statistical machine translation system. The system translates separate words, complete texts, and webpages. This package can be used to detect language from text and to translate it to supported target language. For more info: https://tech.yandex.com/translate/doc/dg/concepts/About-docpage/ .
Eprime is a set of programs for administering psychological experiments by computer. This package provides functions for loading, parsing, filtering and exporting data in the text files produced by Eprime experiments.
An extremely simple stack data type, implemented with R6 classes. The size of the stack increases as needed, and the amortized time complexity is O(1). The stack may contain arbitrary objects.