Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Recent gcc and clang compiler versions provide functionality to test for memory violations and other undefined behaviour; this is often referred to as "Address Sanitizer" (or ASAN') and "Undefined Behaviour Sanitizer" ('UBSAN'). The Writing R Extension manual describes this in some detail in Section 4.3 title "Checking Memory Access". . This feature has to be enabled in the corresponding binary, eg in R, which is somewhat involved as it also required a current compiler toolchain which is not yet widely available, or in the case of Windows, not available at all (via the common Rtools mechanism). . As an alternative, pre-built Docker containers such as the Rocker container r-devel-san or the multi-purpose container r-debug can be used. . This package then provides a means of testing the compiler setup as the known code failures provides in the sample code here should be detected correctly, whereas a default build of R will let the package pass. . The code samples are based on the examples from the Address Sanitizer Wiki at <https://github.com/google/sanitizers/wiki>.
Sample surveys use scientific methods to draw inferences about population parameters by observing a representative part of the population, called sample. The SRSWOR (Simple Random Sampling Without Replacement) is one of the most widely used probability sampling designs, wherein every unit has an equal chance of being selected and units are not repeated.This function draws multiple SRSWOR samples from a finite population and estimates the population parameter i.e. total of HT, Ratio, and Regression estimators. Repeated simulations (e.g., 500 times) are used to assess and compare estimators using metrics such as percent relative bias (%RB), percent relative root means square error (%RRMSE).For details on sampling methodology, see, Cochran (1977) "Sampling Techniques" <https://archive.org/details/samplingtechniqu0000coch_t4x6>.
Conducts hierarchical partitioning to calculate individual contributions of spatial and predictors (groups) towards total R2 for spatial simultaneous autoregressive model.
This package provides access to packages developed for downloading, reading and analyzing microdata from household surveys in Integrated System of Household Surveys - SIPD conducted by Brazilian Institute of Geography and Statistics - IBGE. More information can be obtained from the official website <https://www.ibge.gov.br/>.
Markov chain Monte Carlo samplers for posterior simulations of conjugate Bayesian nonparametric mixture models. Functionality is provided for Gibbs sampling as in Algorithm 3 of Neal (2000) <DOI:10.1080/10618600.2000.10474879>, restricted Gibbs merge-split sampling as described in Jain & Neal (2004) <DOI:10.1198/1061860043001>, and sequentially-allocated merge-split sampling <DOI:10.1080/00949655.2021.1998502>, as well as summary and utility functions.
Based on the illness-death model a large number of clinical trials with oncology endpoints progression-free survival (PFS) and overall survival (OS) can be simulated, see Meller, Beyersmann and Rufibach (2019) <doi:10.1002/sim.8295>. The simulation set-up allows for random and event-driven censoring, an arbitrary number of treatment arms, staggered study entry and drop-out. Exponentially, Weibull and piecewise exponentially distributed survival times can be generated. The correlation between PFS and OS can be calculated.
An extension of sensitivity, specificity, positive and negative predictive value to continuous predicted and reference memberships in [0, 1].
Efficient implementations for Sorted L-One Penalized Estimation (SLOPE): generalized linear models regularized with the sorted L1-norm (Bogdan et al. 2015). Supported models include ordinary least-squares regression, binomial regression, multinomial regression, and Poisson regression. Both dense and sparse predictor matrices are supported. In addition, the package features predictor screening rules that enable fast and efficient solutions to high-dimensional problems.
SCEPtER pipeline for estimating the stellar age for double-lined detached binary systems. The observational constraints adopted in the recovery are the effective temperature, the metallicity [Fe/H], the mass, and the radius of the two stars. The results are obtained adopting a maximum likelihood technique over a grid of pre-computed stellar models.
Uncertainty propagation analysis in spatial environmental modelling following methodology described in Heuvelink et al. (2007) <doi:10.1080/13658810601063951> and Brown and Heuvelink (2007) <doi:10.1016/j.cageo.2006.06.015>. The package provides functions for examining the uncertainty propagation starting from input data and model parameters, via the environmental model onto model outputs. The functions include uncertainty model specification, stochastic simulation and propagation of uncertainty using Monte Carlo (MC) techniques. Uncertain variables are described by probability distributions. Both numerical and categorical data types are handled. Spatial auto-correlation within an attribute and cross-correlation between attributes is accommodated for. The MC realizations may be used as input to the environmental models called from R, or externally.
Sometimes it's useful to know some information about your user in a Shiny app. The available information is: browser name (such as Chrome or Safari') and version, device type (mobile or desktop), operating system (such as Windows or Mac or Android') and version, and browser dimensions.
High level management of widgets, windows and other graphical resources.
The implementation of the algorithm for estimation of mutual information and channel capacity from experimental data by classification procedures (logistic regression). Technically, it allows to estimate information-theoretic measures between finite-state input and multivariate, continuous output. Method described in Jetka et al. (2019) <doi:10.1371/journal.pcbi.1007132>.
Estimate Bayesian nested mixture models via Markov Chain Monte Carlo methods. Specifically, the package implements the common atoms model (Denti et al., 2023), and hybrid finite-infinite models. All models use Gaussian mixtures with a normal-inverse-gamma prior distribution on the parameters. Additional functions are provided to help analyzing the results of the fitting procedure. References: Denti, Camerlenghi, Guindani, Mira (2023) <doi:10.1080/01621459.2021.1933499>, Dâ Angelo, Denti (2024) <doi:10.1214/24-BA1458>.
Allows users to easily build custom docker images <https://docs.docker.com/> from Amazon Web Service Sagemaker <https://aws.amazon.com/sagemaker/> using Amazon Web Service CodeBuild <https://aws.amazon.com/codebuild/>.
Create and format tables and APA statistics for scientific publication. This includes making a Table 1 to summarize demographics across groups, correlation tables with significance indicated by stars, and extracting formatted statistical summarizes from simple tests for in-text notation. The package also includes functions for Winsorizing data based on a Z-statistic cutoff.
Selective sweep is a biological phenomenon in which genetic variation between neighboring beneficial mutant alleles is swept away due to the effect of genetic hitchhiking. Detection of selective sweep is not well acquainted as well as it is a laborious job. This package is a user friendly approach for detecting selective sweep in genomic regions. It uses a Random Forest based machine learning approach to predict selective sweep from VCF files as an input. Input of this function, train data and new data, can be computed using the project <https://github.com/AbhikSarkar1999/SweepDiscovery> in GitHub'. This package has been developed by using the concept of Pavlidis and Alachiotis (2017) <doi:10.1186/s40709-017-0064-0>.
This package implements the diffusion map method of dimensionality reduction and spectral method of combining multiple diffusion maps, including creation of the spectra and visualization of maps.
RCON(V, E) models are a kind of restriction of the Gaussian Graphical Models defined by a set of equality constraints on the entries of the concentration matrix. sglasso package implements the structured graphical lasso (sglasso) estimator proposed in Abbruzzo et al. (2014) for the weighted l1-penalized RCON(V, E) model. Two cyclic coordinate algorithms are implemented to compute the sglasso estimator, i.e. a cyclic coordinate minimization (CCM) and a cyclic coordinate descent (CCD) algorithm.
Access, modify, aggregate and plot data from the Sapfluxnet project, the first global database of sap flow measurements.
Create Interactive Graph (Network) Visualizations. shinyCyJS can be used in Shiny apps or viewed from Rstudio Viewer. shinyCyJS includes API to build Graph model like node or edge with customized attributes for R. shinyCyJS is built with cytoscape.js and htmlwidgets R package.
This package provides robust estimation for spatial error model to presence of outliers in the residuals. The classical estimation methods can be influenced by the presence of outliers in the data. We proposed a robust estimation approach based on the robustified likelihood equations for spatial error model (Vural Yildirim & Yeliz Mert Kantar (2020): Robust estimation approach for spatial error model, Journal of Statistical Computation and Simulation, <doi:10.1080/00949655.2020.1740223>).
Spatio-temporal change of support (STCOS) methods are designed for statistical inference on geographic and time domains which differ from those on which the data were observed. In particular, a parsimonious class of STCOS models supporting Gaussian outcomes was introduced by Bradley, Wikle, and Holan <doi:10.1002/sta4.94>. The stcos package contains tools which facilitate use of STCOS models.
Convenient tools for exchanging files securely from within R. By encrypting the content safe passage of files (shipment) can be provided by common but insecure carriers such as ftp and email. Based on asymmetric cryptography no management of shared secrets is needed to make a secure shipment as long as authentic public keys are available. Public keys used for secure shipments may also be obtained from external providers as part of the overall process. Transportation of files will require that relevant services such as ftp and email servers are available.