Discovery of genome-wide variable alternative splicing events from short-read RNA-seq data and visualizations of gene splicing information for publication-quality multi-panel figures in a population. (Warning: The visualizing function is removed due to the dependent package Sushi deprecated. If you want to use it, please change back to an older version.).
This package provides a collection of functions related to density estimation by using Chen's (2000) idea. Mean Squared Errors (MSE) are calculated for estimated curves. For this purpose, R functions allow the distribution to be Gamma, Exponential or Weibull. For details see Chen (2000), Scaillet (2004) <doi:10.1080/10485250310001624819> and Khan and Akbar.
This package provides tools for the quantitative analysis of axon integrity in microscopy images. It implements image pre-processing, adaptive thresholding, feature extraction, and support vector machine-based classification to compute indices such as the Axon Integrity Index (AII) and Degeneration Index (DI). The package is designed for reproducible and automated analysis in neuroscience research.
This comprehensive framework for periodic time series modeling is designated as "CLIC" (The LIC for Distributed Cosine Regression Analysis) analysis. It is predicated on the assumption that the underlying data exhibits complex periodic structures beyond simple harmonic components. The philosophy of the method is articulated in Guo G. (2020) <doi:10.1080/02664763.2022.2053949>.
Efficient implementations of cross-validation techniques for linear and ridge regression models, leveraging C++ code with Rcpp', RcppParallel', and Eigen libraries. It supports leave-one-out, generalized, and K-fold cross-validation methods, utilizing Eigen matrices for high performance. Methodology references: Hastie, Tibshirani, and Friedman (2009) <doi:10.1007/978-0-387-84858-7>.
Latent process embedding for functional network data with the Functional Adjacency Spectral Embedding. Fits smooth latent processes based on cubic spline bases. Also generates functional network data from three models, and evaluates a network generalized cross-validation criterion for dimension selection. For more information, see MacDonald, Zhu and Levina (2022+) <arXiv:2210.07491>.
Creating effective colour palettes for figures is challenging. This package generates and plot palettes of optimally distinct colours in perceptually uniform colour space, based on iwanthue <http://tools.medialab.sciences-po.fr/iwanthue/>. This is done through k-means clustering of CIE Lab colour space, according to user-selected constraints on hue, chroma, and lightness.
The half-weight index gregariousness (HWIG) is an association index used in social network analyses. It extends the half-weight association index (HWI), correcting for level of gregariousness in individuals. It is calculated using group by individual data according to methods described in Godde et al. (2013) <doi:10.1016/j.anbehav.2012.12.010>.
This package implements Interpretable Boosted Linear Models (IBLMs). These combine a conventional generalized linear model (GLM) with a machine learning component, such as XGBoost. The package also provides tools within for explaining and analyzing these models. For more details see Gawlowski and Wang (2025) <https://ifoa-adswp.github.io/IBLM/reference/figures/iblm_paper.pdf>.
This package provides functions for dimension reduction, using MAVE (Minimum Average Variance Estimation), OPG (Outer Product of Gradient) and KSIR (sliced inverse regression of kernel version). Methods for selecting the best dimension are also included. Xia (2002) <doi:10.1111/1467-9868.03411>; Xia (2007) <doi:10.1214/009053607000000352>; Wang (2008) <doi:10.1198/016214508000000418>.
This package implements an MCMC sampler for the posterior distribution of arbitrary time-homogeneous multivariate stochastic differential equation (SDE) models with possibly latent components. The package provides a simple entry point to integrate user-defined models directly with the sampler's C++ code, and parallelizes large portions of the calculations when compiled with OpenMP'.
Calculates Model-Averaged Tail Area Wald (MATA-Wald) confidence intervals, and MATA-Wald confidence densities and distributions, which are constructed using single-model frequentist estimators and model weights. See Turek and Fletcher (2012) <doi:10.1016/j.csda.2012.03.002> and Fletcher et al (2019) <doi:10.1007/s10651-019-00432-5> for details.
Fits a non-linear transformation model ('nltm') for analyzing survival data, see Tsodikov (2003) <doi:10.1111/1467-9868.00414>. The class of nltm includes the following currently supported models: Cox proportional hazard, proportional hazard cure, proportional odds, proportional hazard - proportional hazard cure, proportional hazard - proportional odds cure, Gamma frailty, and proportional hazard - proportional odds.
Miscellaneous R functions developed as collateral damage over the course of work in statistical and scientific computing for research. These include, for example, utilities that supplement existing idiosyncrasies of the R language, extend existing plotting functionality and aesthetics, help prepare data objects for imputation, and extend access to command line tools and systems-level information.
The ntfy (pronounce: notify) service is a simple HTTP-based pub-sub notification service. It allows you to send notifications to your phone or desktop via scripts from any computer, entirely without signup, cost or setup. It's also open source if you want to run your own. Visit <https://ntfy.sh> for more details.
The goal of SIHR is to provide inference procedures in the high-dimensional generalized linear regression setting for: (1) linear functionals <doi:10.48550/arXiv.1904.12891> <doi:10.48550/arXiv.2012.07133>, (2) conditional average treatment effects, (3) quadratic functionals <doi:10.48550/arXiv.1909.01503>, (4) inner product, (5) distance.
Calculate superior identification index and its extensions. Measure the performance of journals based on how well they could identify the top papers by any index (e.g. citation indices) according to Huang & Yang. (2022) <doi:10.1007/s11192-022-04372-z>. These methods could be extended to evaluate other entities such as institutes, countries, etc.
Find the optimal decision rules (AKA progression criteria) and sample size for clinical trials with three (stop/pause/go) outcomes. Both binary and continuous endpoints can be accommodated, as can cases where an adjustment is planned following a pause outcome. For more details see Wilson et al. (2024) <doi:10.1186/s12874-024-02351-x>.
Utilities for using a probability sample to reweight prevalence estimates calculated from the All of Us research program. Weighted estimates will still not be representative of the general U.S. population. However, they will provide an early indication for how unweighted estimates may be biased by the sampling bias in the All of Us sample.
The zlib package for R aims to offer an R-based equivalent of Python's built-in zlib module for data compression and decompression. This package provides a suite of functions for working with zlib compression, including utilities for compressing and decompressing data streams, manipulating compressed files, and working with gzip', zlib', and deflate formats.
Genomic data analyses requires integrated visualization of known genomic information and new experimental data. Gviz uses the biomaRt and the rtracklayer packages to perform live annotation queries to Ensembl and UCSC and translates this to e.g. gene/transcript structures in viewports of the grid graphics package. This results in genomic information plotted together with your data.
Expedite large RNA-Seq analyses using a combination of previously developed tools. YARN is meant to make it easier for the user in performing basic mis-annotation quality control, filtering, and condition-aware normalization. YARN leverages many Bioconductor tools and statistical techniques to account for the large heterogeneity and sparsity found in very large RNA-seq experiments.
This package implements the Agnostic Fay-Herriot model, an extension of the traditional small area model. In place of normal sampling errors, the sampling error distribution is estimated with a Gaussian process to accommodate a broader class of distributions. This flexibility is most useful in the presence of bounded, multi-modal, or heavily skewed sampling errors.
Anytime-valid inference for linear models, namely, sequential t-tests, sequential F-tests, and confidence sequences with time-uniform Type-I error and coverage guarantees. This allows hypotheses to be continuously tested without sacrificing false positive guarantees. It is based on the methods documented in Lindon et al. (2022) <doi:10.48550/arXiv.2210.08589>.