Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Stores and eases the manipulation of spectra and associated data, with dedicated classes for spatial and soil-related data.
Efficient procedure for fitting regularization paths between L1 and L0, using the MC+ penalty of Zhang, C.H. (2010)<doi:10.1214/09-AOS729>. Implements the methodology described in Mazumder, Friedman and Hastie (2011) <DOI: 10.1198/jasa.2011.tm09738>. Sparsenet computes the regularization surface over both the family parameter and the tuning parameter by coordinate descent.
We provide functions for estimation and inference of nonlinear and non-stationary time series regression using the sieve methods and bootstrapping procedure.
S4 class object for creating and managing group sequential designs. It calculates the efficacy and futility boundaries at each look. It allows modifying the design and tracking the design update history.
This package provides tools to conduct interpretable sensitivity analyses for weighted estimators, introduced in Huang (2024) <doi:10.1093/jrsssa/qnae012> and Hartman and Huang (2024) <doi:10.1017/pan.2023.12>. The package allows researchers to generate the set of recommended sensitivity summaries to evaluate the sensitivity in their underlying weighting estimators to omitted moderators or confounders. The tools can be flexibly applied in causal inference settings (i.e., in external and internal validity contexts) or survey contexts.
Estimates correlation coefficients with associated confidence limits for bivariate, partially censored survival times. Uses the iterative multiple imputation approach proposed by Schemper, Kaider, Wakounig and Heinze (2013) <doi:10.1002/sim.5874>. Provides a scatterplot function to visualize the bivariate distribution, either on the original time scale or as copula.
Given a list of substance compositions, a list of substances involved in a process, and a list of constraints in addition to mass conservation of elementary constituents, the package contains functions to build the substance composition matrix, to analyze the uniqueness of process stoichiometry, and to calculate stoichiometric coefficients if process stoichiometry is unique. (See Reichert, P. and Schuwirth, N., A generic framework for deriving process stoichiometry in enviromental models, Environmental Modelling and Software 25, 1241-1251, 2010 for more details.).
This package provides a set of functions and datasets implementation of small area estimation when auxiliary variable is measured with error. These functions provide a empirical best linear unbiased prediction (EBLUP) estimator and mean squared error (MSE) estimator of the EBLUP. These models were developed by Ybarra and Lohr (2008) <doi:10.1093/biomet/asn048>.
This package performs analysis of split-split plot experiments in both completely randomized and randomized complete block designs. With the results, you can obtain ANOVA, mean tests, and regression analysis (Este pacote faz a analise de experimentos em parcela subsubdivididas no delineamento inteiramente casualizado e delineamento em blocos casualizados. Com resultados e possà vel obter a ANOVA, testes de medias e análise de regressao) <https://www.expstat.com/pacotes-do-r>.
Proxy forward modelling for sediment archived climate proxies such as Mg/Ca, d18O or Alkenones. The user provides a hypothesised "true" past climate, such as output from a climate model, and details of the sedimentation rate and sampling scheme of a sediment core. Sedproxy returns simulated proxy records. Implements the methods described in Dolman and Laepple (2018) <doi:10.5194/cp-14-1851-2018>.
An interactive shiny application to assist in determining sample sizes for common survey designs such as simple random sampling', stratified sampling', and cluster sampling'. It includes formulas, helper calculators, and illustrative examples.
Generates multiple imputed datasets from a substantive model compatible fully conditional specification model for time-to-event data. Our method assumes that the censoring process also depends on the covariates with missing values. Details will be available in an upcoming publication.
This package provides functions for stabilometric signal quantification. The input is a data frame containing the x, y coordinates of the center-of-pressure displacement. Jose Magalhaes de Oliveira (2017) <doi:10.3758/s13428-016-0706-4> "Statokinesigram normalization method"; T E Prieto, J B Myklebust, R G Hoffmann, E G Lovett, B M Myklebust (1996) <doi:10.1109/10.532130> "Measures of postural steadiness: Differences between healthy young and elderly adults"; L F Oliveira et al (1996) <doi:10.1088/0967-3334/17/4/008> "Calculation of area of stabilometric signals using principal component analisys".
Uses logistic regression to model the probability of detection as a function of covariates. This model is then used with observational survey data to estimate population size, while accounting for uncertain detection. See Steinhorst and Samuel (1989).
Enables deploying configuration file-based shiny apps with minimal programming for interactive exploration and analysis showcase of molecular expression data. For exploration, supports visualization of correlations between rows of an expression matrix and a table of observations, such as clinical measures, and comparison of changes in expression over time. For showcase, enables visualizing the results of differential expression from package such as limma', co-expression modules from WGCNA and lower dimensional projections.
An end-to-end toolkit for land use and land cover classification using big Earth observation data. Builds satellite image data cubes from cloud collections. Supports visualization methods for images and time series and smoothing filters for dealing with noisy time series. Enables merging of multi-source imagery (SAR, optical, DEM). Includes functions for quality assessment of training samples using self-organized maps and to reduce training samples imbalance. Provides machine learning algorithms including support vector machines, random forests, extreme gradient boosting, multi-layer perceptrons, temporal convolution neural networks, and temporal attention encoders. Performs efficient classification of big Earth observation data cubes and includes functions for post-classification smoothing based on Bayesian inference. Enables best practices for estimating area and assessing accuracy of land change. Includes object-based spatio-temporal segmentation for space-time OBIA. Minimum recommended requirements: 16 GB RAM and 4 CPU dual-core.
Decision support tool for prioritizing sites for ecological surveys based on their potential to improve plans for conserving biodiversity (e.g. plans for establishing protected areas). Given a set of sites that could potentially be acquired for conservation management, it can be used to generate and evaluate plans for surveying additional sites. Specifically, plans for ecological surveys can be generated using various conventional approaches (e.g. maximizing expected species richness, geographic coverage, diversity of sampled environmental algorithms. After generating such survey plans, they can be evaluated using conditions) and maximizing value of information. Please note that several functions depend on the Gurobi optimization software (available from <https://www.gurobi.com>). Additionally, the JAGS software (available from <https://mcmc-jags.sourceforge.io/>) is required to fit hierarchical generalized linear models. For further details, see Hanson et al. (2023) <doi:10.1111/1365-2664.14309>.
R client and utilities for Seven Bridges Platform API, from Cancer Genomics Cloud to other Seven Bridges supported platforms. API documentation is hosted publicly at <https://docs.sevenbridges.com/docs/the-api>.
Simplicially constrained regression models for proportions in both sides. The constraint is always that the betas are non-negative and sum to 1. References: Iverson S.J.., Field C., Bowen W.D. and Blanchard W. (2004) "Quantitative Fatty Acid Signature Analysis: A New Method of Estimating Predator Diets". Ecological Monographs, 74(2): 211-235. <doi:10.1890/02-4105>.
Download files hosted on AWS S3 (Amazon Web Services Simple Storage Service; <https://aws.amazon.com/s3/>) to a local directory based on their URI. Avoid downloading files that are already present locally. Allow for customization of where to store downloaded files.
This package provides a graphical user interface to the seasonal package and X-13ARIMA-SEATS', the U.S. Census Bureau's seasonal adjustment software.
Prototype your shiny apps quickly with these Lorem-Ipsum-like Helpers.
It fits scale mixture of skew-normal linear mixed models using either an expectationâ maximization (EM) type algorithm or its accelerated version (Damped Anderson Acceleration with Epsilon Monotonicity, DAAREM), including some possibilities for modeling the within-subject dependence <doi:10.18637/jss.v115.i07>.
Calculates constant structure parameters of endocrine homeostatic systems from equilibrium hormone concentrations. Methods and equations have been described in Dietrich et al. (2012) <doi:10.1155/2012/351864> and Dietrich et al. (2016) <doi:10.3389/fendo.2016.00057>.