Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements snake in R as a programming example, see <https://en.wikipedia.org/wiki/Snake_(video_game_genre)>.
This package implements the algorithm described in Barron, M., and Li, J. (Not yet published). This algorithm clusters samples from multiple ordered populations, links the clusters across the conditions and identifies marker genes for these changes. The package was designed for scRNA-Seq data but is also applicable to many other data types, just replace cells with samples and genes with variables. The package also contains functions for estimating the parameters for SparseMDC as outlined in the paper. We recommend that users further select their marker genes using the magnitude of the cluster centers.
Generate an invoice containing a header with invoice number and businesses details. The invoice table contains any of: salary, one-liner costs, grouped costs. Under the table signature and bank account details appear. Pages are numbered when more than one. Source .json and .Rmd files are editable in the app. A .csv file with raw data can be downloaded. This package includes functions for getting exchange rates between currencies based on quantmod (Ryan and Ulrich, 2023 <https://CRAN.R-project.org/package=quantmod>).
Analysis of risk through liability matrices. Contains a Gibbs sampler for network reconstruction, where only row and column sums of the liabilities matrix as well as some other fixed entries are observed, following the methodology of Gandy&Veraart (2016) <doi:10.1287/mnsc.2016.2546>. It also incorporates models that use a power law distribution on the degree distribution.
The aim of this package is to offer new methodology for unit-level small area models under transformations and limited population auxiliary information. In addition to this new methodology, the widely used nested error regression model without transformations (see "An Error-Components Model for Prediction of County Crop Areas Using Survey and Satellite Data" by Battese, Harter and Fuller (1988) <doi:10.1080/01621459.1988.10478561>) and its well-known uncertainty estimate (see "The estimation of the mean squared error of small-area estimators" by Prasad and Rao (1990) <doi:10.1080/01621459.1995.10476570>) are provided. In this package, the log transformation and the data-driven log-shift transformation are provided. If a transformation is selected, an appropriate method is chosen depending on the respective input of the population data: Individual population data (see "Empirical best prediction under a nested error model with log transformation" by Molina and Martà n (2018) <doi:10.1214/17-aos1608>) but also aggregated population data (see "Estimating regional income indicators under transformations and access to limited population auxiliary information" by Würz, Schmid and Tzavidis <unpublished>) can be entered. Especially under limited data access, new methodologies are provided in saeTrafo. Several options are available to assess the used model and to judge, present and export its results. For a detailed description of the package and the methods used see the corresponding vignette.
Implementation of statistical methods for the estimation of toroidal diffusions. Several diffusive models are provided, most of them belonging to the Langevin family of diffusions on the torus. Specifically, the wrapped normal and von Mises processes are included, which can be seen as toroidal analogues of the Ornstein-Uhlenbeck diffusion. A collection of methods for approximate maximum likelihood estimation, organized in four blocks, is given: (i) based on the exact transition probability density, obtained as the numerical solution to the Fokker-Plank equation; (ii) based on wrapped pseudo-likelihoods; (iii) based on specific analytic approximations by wrapped processes; (iv) based on maximum likelihood of the stationary densities. The package allows the replicability of the results in Garcà a-Portugués et al. (2019) <doi:10.1007/s11222-017-9790-2>.
Efficiently estimate shape parameters of periodic time series imagery with which a statistical seasonal trend analysis (STA) is subsequently performed. STA output can be exported in conventional raster formats. Methods to visualize STA output are also implemented as well as the calculation of additional basic statistics. STA is based on (R. Eastman, F. Sangermano, B. Ghimire, H. Zhu, H. Chen, N. Neeti, Y. Cai, E. Machado and S. Crema, 2009) <doi:10.1080/01431160902755338>.
This package provides methods and data for cluster detection and disease mapping.
Make graphical representations of single case data and transform graphical displays back to raw data, as discussed in Bulte and Onghena (2013) <doi:10.22237/jmasm/1383280020>. The package also includes tools for visually analyzing single-case data, by displaying central location, variability and trend.
Estimate the regression coefficients and the baseline hazard of proportional hazard Cox models with left, right or interval censored survival data using maximum penalised likelihood. A non-parametric smooth estimate of the baseline hazard function is provided.
Includes an interactive application designed to support educators in wide-ranging disciplines, with a particular focus on those teaching introductory statistical methods (descriptive and/or inferential) for data analysis. Users are able to randomly generate data, make new versions of existing data through common adjustments (e.g., add random normal noise and perform transformations), and check the suitability of the resulting data for statistical analyses.
This package provides functions to perform split robust least angle regression. The approach first uses the least angle regression algorithm to split the variables into the models of an ensemble and robust estimates of the correlation between predictors. An elastic net estimator is then applied to the selected predictors in each model using the imputed data from the detect deviating cell (DDC) method.
Package performs Cox regression and survival distribution function estimation when the survival times are subject to double truncation. In case that the survival and truncation times are quasi-independent, the estimation procedure for each method involves inverse probability weighting, where the weights correspond to the inverse of the selection probabilities and are estimated using the survival times and truncation times only. A test for checking this independence assumption is also included in this package. The functions available in this package for Cox regression, survival distribution function estimation, and testing independence under double truncation are based on the following methods, respectively: Rennert and Xie (2018) <doi:10.1111/biom.12809>, Shen (2010) <doi:10.1007/s10463-008-0192-2>, Martin and Betensky (2005) <doi:10.1198/016214504000001538>. When the survival times are dependent on at least one of the truncation times, an EM algorithm is employed to obtain point estimates for the regression coefficients. The standard errors are calculated using the bootstrap method. See Rennert and Xie (2022) <doi:10.1111/biom.13451>. Both the independent and dependent cases assume no censoring is present in the data. Please contact Lior Rennert <liorr@clemson.edu> for questions regarding function coxDT and Yidan Shi <yidan.shi@pennmedicine.upenn.edu> for questions regarding function coxDTdep.
This package provides option settings management that goes beyond R's default options function. With this package, users can define their own option settings manager holding option names, default values and (if so desired) ranges or sets of allowed option values that will be automatically checked. Settings can then be retrieved, altered and reset to defaults with ease. For R programmers and package developers it offers cloning and merging functionality which allows for conveniently defining global and local options, possibly in a multilevel options hierarchy. See the package vignette for some examples concerning functions, S4 classes, and reference classes. There are convenience functions to reset par() and options() to their factory defaults'.
Reference data sets of species sensitivities to compare the results of fitting species sensitivity distributions using software such as ssdtools and Burrlioz'. It consists of 17 primary data sets from four different Australian and Canadian organizations as well as five datasets from anonymous sources. It also includes a data set of the results of fitting various distributions using different software.
Easily display user feedback in Shiny apps.
Substitution matrices are important parameters in protein alignment algorithms. These matrices represent the likelihood that an amino acid will be substituted for another during mutation. This tool allows users to apply predefined and custom matrices and then explore the resulting alignments with interactive visualizations. SubVis requires the availability of a web browser.
Similarity regression, evaluating the probability of association between sets of ontological terms and binary response vector. A no-association model is compared with one in which the log odds of a true response is linked to the semantic similarity between terms and a latent characteristic ontological profile - Phenotype Similarity Regression for Identifying the Genetic Determinants of Rare Diseases', Greene et al 2016 <doi:10.1016/j.ajhg.2016.01.008>.
The methods discussed in this package are new non-parametric methods based on sequential normal scores SNS (Conover et al (2017) <doi:10.1080/07474946.2017.1360091>), designed for sequences of observations, usually time series data, which may occur singly or in batches, and may be univariate or multivariate. These methods are designed to detect changes in the process, which may occur as changes in location (mean or median), changes in scale (standard deviation, or variance), or other changes of interest in the distribution of the observations, over the time observed. They usually apply to large data sets, so computations need to be simple enough to be done in a reasonable time on a computer, and easily updated as each new observation (or batch of observations) becomes available. Some examples and more detail in SNS is presented in the work by Conover et al (2019) <arXiv:1901.04443>.
Estimates area and subarea level proportions using the Small Area Estimation (SAE) Twofold Subarea Model with a hierarchical Bayesian (HB) approach under Beta distribution. A number of simulated datasets generated for illustration purposes are also included. The rstan package is employed to estimate parameters via the Hamiltonian Monte Carlo and No U-Turn Sampler algorithm. The model-based estimators include the HB mean, the variation of the mean, and quantiles. For references, see Rao and Molina (2015) <doi:10.1002/9781118735855>, Torabi and Rao (2014) <doi:10.1016/j.jmva.2014.02.001>, Leyla Mohadjer et al.(2007) <http://www.asasrms.org/Proceedings/y2007/Files/JSM2007-000559.pdf>, Erciulescu et al.(2019) <doi:10.1111/rssa.12390>, and Yudasena (2024).
An implementation of split-population duration regression models. Unlike regular duration models, split-population duration models are mixture models that accommodate the presence of a sub-population that is not at risk for failure, e.g. cancer patients who have been cured by treatment. This package implements Weibull and Loglogistic forms for the duration component, and focuses on data with time-varying covariates. These models were originally formulated in Boag (1949) and Berkson and Gage (1952), and extended in Schmidt and Witte (1989).
Sparse-group boosting to be used in conjunction with the mboost for modeling grouped data. Applicable to all sparse-group lasso type problems where within-group and between-group sparsity is desired. Interprets and visualizes individual variables and groups.
This package provides a design-based approach to statistical inference, with a focus on spatial data. Spatially balanced samples are selected using the Generalized Random Tessellation Stratified (GRTS) algorithm. The GRTS algorithm can be applied to finite resources (point geometries) and infinite resources (linear / linestring and areal / polygon geometries) and flexibly accommodates a diverse set of sampling design features, including stratification, unequal inclusion probabilities, proportional (to size) inclusion probabilities, legacy (historical) sites, a minimum distance between sites, and two options for replacement sites (reverse hierarchical order and nearest neighbor). Data are analyzed using a wide range of analysis functions that perform categorical variable analysis, continuous variable analysis, attributable risk analysis, risk difference analysis, relative risk analysis, change analysis, and trend analysis. spsurvey can also be used to summarize objects, visualize objects, select samples that are not spatially balanced, select panel samples, measure the amount of spatial balance in a sample, adjust design weights, and more. For additional details, see Dumelle et al. (2023) <doi:10.18637/jss.v105.i03>.
An index is created using a mathematical model that transforms multi-dimensional variables into a single value. These variables are often correlated, and while PCA-based indices can address the issue of multicollinearity, they typically do not account for survey weights, which can lead to inaccurate rankings of survey units such as households, districts, or states. To resolve this, the current package facilitates the development of a principal component analysis-based composite index by incorporating survey weights for each sample observation. This ensures the generation of a survey-weighted principal component-based normalized composite index. Additionally, the package provides a normalized principal component-based composite index and ranks the sample observations based on the values of the composite indices. For method details see, Skinner, C. J., Holmes, D. J. and Smith, T. M. F. (1986) <DOI:10.1080/01621459.1986.10478336>, Singh, D., Basak, P., Kumar, R. and Ahmad, T. (2023) <DOI:10.3389/fams.2023.1274530>.