This package provides a function that reads in the GEO code of a gene expression dataset, retrieves its data from GEO, (optionally) retrieves the gene symbols of the dataset, and returns a simple dataframe table containing all the data. Platforms available: GPL11532, GPL23126, GPL6244, GPL8300, GPL80, GPL96, GPL570, GPL571, GPL20115, GPL1293, GPL6102, GPL6104, GPL6883, GPL6884, GPL13497, GPL14550, GPL17077, GPL6480. GEO: Gene Expression Omnibus. ID: identifier code. The GEO datasets are downloaded from the URL <https://ftp.ncbi.nlm.nih.gov/geo/series/>. More information can be found in the following manuscript: Davide Chicco, "geneExpressionFromGEO: an R package to facilitate data reading from Gene Expression Omnibus (GEO)". Microarray Data Analysis, Methods in Molecular Biology, volume 2401, chapter 12, pages 187-194, Springer Protocols, 2021, <doi:10.1007/978-1-0716-1839-4_12>.
Projections are common dimensionality reduction methods, which represent high-dimensional data in a two-dimensional space. However, when restricting the output space to two dimensions, which results in a two dimensional scatter plot (projection) of the data, low dimensional similarities do not represent high dimensional distances coercively [Thrun, 2018] <DOI: 10.1007/978-3-658-20540-9>. This could lead to a misleading interpretation of the underlying structures [Thrun, 2018]. By means of the 3D topographic map the generalized Umatrix is able to depict errors of these two-dimensional scatter plots. The package is derived from the book of Thrun, M.C.: "Projection Based Clustering through Self-Organization and Swarm Intelligence" (2018) <DOI:10.1007/978-3-658-20540-9> and the main algorithm called simplified self-organizing map for dimensionality reduction methods is published in Thrun, M.C. and Ultsch, A.: "Uncovering High-dimensional Structures of Projections from Dimensionality Reduction Methods" (2020) <DOI:10.1016/j.mex.2020.101093>.
Path::Iterator::Rule iterates over files and directories to identify ones matching a user-defined set of rules. The API is based heavily on File::Find::Rule, but with more explicit distinction between matching rules and options that influence how directories are searched. A Path::Iterator::Rule object is a collection of rules (match criteria) with methods to add additional criteria. Options that control directory traversal are given as arguments to the method that generates an iterator.
A summary of features for comparison to other file finding modules:
provides many helper methods for specifying rules
offers (lazy) iterator and flattened list interfaces
custom rules implemented with callbacks
breadth-first (default) or pre- or post-order depth-first searching
follows symlinks (by default, but can be disabled)
directories visited only once (no infinite loop; can be disabled)
doesn't chdir during operation
provides an API for extensions
As a convenience, the PIR module is an empty subclass of this one that is less arduous to type for one-liners.
Tri-hierarchical incomplete block design is defined as an arrangement of v treatments each replicated r times in a three system of blocks if, each block of the first system contains m_1 blocks of second system and each block of the second system contains m_2 blocks of the third system. Ignoring the first and second system of blocks, it leaves an incomplete block design with b_3 blocks of size k_3i units; ignoring first and third system of blocks, it leaves an incomplete block design with b_2 blocks each of size k_2i units and ignoring the second and third system of blocks, it leaves an incomplete block design with b_1 blocks each of size k_1 units. For dealing with experimental circumstances where there are three nested sources of variation, a tri-hierarchical incomplete block design can be adopted. Tri - hierarchical incomplete block designs can find application potential in obtaining mating-environmental designs for breeding trials. To know more about nested block designs one can refer Preece (1967) <doi:10.1093/biomet/54.3-4.479>. This package includes series1(), series2(), series3() and series4() functions. This package generates tri-hierarchical designs with six component designs under certain parameter restrictions.
Google Trends provides cross-sectional and time-series data on searches, but lacks readily available longitudinal data. Researchers, who want to create longitudinal Google Trends on their own, face practical challenges, such as normalized counts that make it difficult to combine cross-sectional and time-series data and limitations in data formats and timelines that limit data granularity over extended time periods. This package addresses these issues and enables researchers to generate longitudinal Google Trends data. This package is built on pytrends', a Python library that acts as the unofficial Google Trends API to collect Google Trends data. As long as the Google Trends API', pytrends and all their dependencies are working, this package will work. During testing, we noticed that for the same input (keyword, topic, data_format, timeline), the output index can vary from time to time. Besides, if the keyword is not very popular, then the resulting dataset will contain a lot of zeros, which will greatly affect the final result. While this package has no control over the accuracy or quality of Google Trends data, once the data is created, this package coverts it to longitudinal data. In addition, the user may encounter a 429 Too Many Requests error when using cross_section() and time_series() to collect Google Trends data. This error indicates that the user has exceeded the rate limits set by the Google Trends API'. For more information about the Google Trends API - pytrends', visit <https://pypi.org/project/pytrends/>.
In statistical modeling, multiple models need to be compared based on certain criteria. The method described here uses eight metrics from AllMetrics package. â input_dfâ is the data frame (at least two columns for comparison) containing metrics values in different rows of a column (which denotes a particular modelâ s performance). First five metrics are expected to be minimum and last three metrics are expected to be maximum for a model to be considered good. Firstly, every metric value (among first five) is searched in every columns and minimum values are denoted as â MINâ and other values are denoted as â NAâ . Secondly, every metric (among last three) is searched in every columns and maximum values are denoted as â MAXâ and other values are denoted as â NAâ . â output_dfâ contains the similar number of rows (which is 8) and columns (which is number of models to be compared) as of â input_dfâ . Values in â output_dfâ are corresponding â NAâ , â MINâ or â MAXâ . Finally, the column containing minimum number of â NAâ values is denoted as the best column. â min_NA_colâ gives the name of the best column (model). â min_NA_valuesâ are the corresponding metrics values. âBestColumn_metricsâ is the data frame (dimension: 1*8) containing different metrics of the best column (model). â best_column_resultsâ is the final result (a list) containing all of these output elements. In special case, if two columns having equal NA', it will be checked among these two column which one is having least NA in first five rows and will be inferred as the best. More details about AllMetrics can be found in Garai (2023) <doi:10.13140/RG.2.2.18688.30723>.
Rcmdr Plugin for the FactoMineR package.
Runtime for Regenerator-compiled generator and async functions.
Runtime for Regenerator-compiled generator and async functions.
Runtime for Regenerator-compiled generator and async functions.
This package provides additional test assertions for Ruby standard libraries.
EmailReplyTrimmer is a Ruby small library to trim replies from plain text email.
This package provides a C API library for the rustc-demangle crate.
This package provides a collection of RuboCop cops to check for performance optimizations in Ruby code.
This package provides a collection of RuboCop cops to check for performance optimizations in Ruby code.
U-Boot is a bootloader used mostly for ARM boards. It also initializes the boards (RAM etc).
This package provides a plugin for the RuboCop code style enforcing & linting tool for factory_bot files.
Optimized record access
Optimized record access
Nokogiri based 'have_tag' and 'with_tag' matchers for rspec 3. Does not depend on assert_select matcher, provides useful error messages.
This package provides C extensions to optimize the concurrent-ruby gem when running under the Matz's Ruby Interpreter (MRI, also known as CRuby).
Store minor allele frequency data from the Exome Aggregation Consortium (ExAC release 1.0) for the human genome version GRCh38.
Store minor allele frequency data from the Exome Aggregation Consortium (ExAC release 1.0) for the human genome version hs37d5.
An R Commander plug-in for the WorldFlora package. It was mainly developed to show work flows and scripts for first-time users.