Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a framework for performing discrete (share-level) simulations of investment strategies. Simulated portfolios optimize exposure to an input signal subject to constraints such as position size and factor exposure. For background see L. Chincarini and D. Kim (2010, ISBN:978-0-07-145939-6) "Quantitative Equity Portfolio Management".
Package provides the possibility to sampling complete datasets from a normal distribution to simulate cluster randomized trails for different study designs.
This package provides indices such as Manly's alpha, foraging ratio, and Ivlev's selectivity to allow for analysis of dietary selectivity and preference. Can accommodate multiple experimental designs such as constant prey number of prey depletion. Please contact the package maintainer with any publications making use of this package in an effort to maintain a repository of dietary selections studies.
Suite of helper functions for data wrangling and visualization. The only theme for these functions is that they tend towards simple, short, and narrowly-scoped. These functions are built for tasks that often recur but are not large enough in scope to warrant an ecosystem of interdependent functions.
This package contains tests for association between a set of genetic variants and multiple correlated outcomes that are interval censored. Interval-censored data arises when the exact time of the onset of an outcome of interest is unknown but known to fall between two time points.
Randomization of presence/absence species distribution raster data with or without including spatial structure for calculating standardized effect sizes and testing null hypothesis. The randomization algorithms are based on classical algorithms for matrices (Gotelli 2000, <doi:10.2307/177478>) implemented for raster data.
Perform common dendrometry operations such as inventory preparing, and inventory data analysis.
This package provides a platform for computing competition indices and experimenting with spatially explicit individual-based vegetation models.
This package provides tools for designing spatially explicit capture-recapture studies of animal populations. This is primarily a simulation manager for package secr'. Extensions in version 2.5.0 include costing and evaluation of detector spacing.
It contains soft clustering algorithms, in particular approaches derived from rough set theory: Lingras & West original rough k-means, Peters refined rough k-means, and PI rough k-means. It also contains classic k-means and a corresponding illustrative demo.
Exporting shiny applications with shinylive allows you to run them entirely in a web browser, without the need for a separate R server. The traditional way of deploying shiny applications involves in a separate server and client: the server runs R and shiny', and clients connect via the web browser. When an application is deployed with shinylive', R and shiny run in the web browser (via webR'): the browser is effectively both the client and server for the application. This allows for your shiny application exported by shinylive to be hosted by a static web server.
This package provides a fast and accurate pipeline for single-cell analyses. The scDHA software package can perform clustering, dimension reduction and visualization, classification, and time-trajectory inference on single-cell data (Tran et.al. (2021) <DOI:10.1038/s41467-021-21312-2>).
This package implements the calibrated sensitivity analysis approach for matched observational studies. Our sensitivity analysis framework views matched sets as drawn from a super-population. The unmeasured confounder is modeled as a random variable. We combine matching and model-based covariate-adjustment methods to estimate the treatment effect. The hypothesized unmeasured confounder enters the picture as a missing covariate. We adopt a state-of-art Expectation Maximization (EM) algorithm to handle this missing covariate problem in generalized linear models (GLMs). As our method also estimates the effect of each observed covariate on the outcome and treatment assignment, we are able to calibrate the unmeasured confounder to observed covariates. Zhang, B., Small, D. S. (2018). <arXiv:1812.00215>.
Software to simulate population change across space and time. Visintin et al. (2020) <doi:10.1111/2041-210X.13354>.
The predictive value of a statistical model can often be improved by applying shrinkage methods. This can be achieved, e.g., by regularized regression or empirical Bayes approaches. Various types of shrinkage factors can also be estimated after a maximum likelihood. While global shrinkage modifies all regression coefficients by the same factor, parameterwise shrinkage factors differ between regression coefficients. With variables which are either highly correlated or associated with regard to contents, such as several columns of a design matrix describing a nonlinear effect, parameterwise shrinkage factors are not interpretable and a compromise between global and parameterwise shrinkage, termed joint shrinkage', is a useful extension. A computational shortcut to resampling-based shrinkage factor estimation based on DFBETA residuals can be applied. Global, parameterwise and joint shrinkage for models fitted by lm(), glm(), coxph(), or mfp() is available.
Calculates graph theoretic scagnostics. Scagnostics describe various measures of interest for pairs of variables, based on their appearance on a scatterplot. They are useful tool for discovering interesting or unusual scatterplots from a scatterplot matrix, without having to look at every individual plot.
Method to estimate the spatial influence scales of landscape variables on a response variable. The method is based on Chandler and Hepinstall-Cymerman (2016) Estimating the spatial scales of landscape effects on abundance, Landscape ecology, 31: 1383-1394, <doi:10.1007/s10980-016-0380-z>.
This package contains all the formulae of the growth and trace element uptake model described in the equally-named Geoscientific Model Development paper (de Winter, 2017, <doi:10.5194/gmd-2017-137>). The model takes as input a file with X- and Y-coordinates of digitized growth increments recognized on a longitudinal cross section through the bivalve shell, as well as a BMP file of an elemental map of the cross section surface with chemically distinct phases separated by phase analysis. It proceeds by a step-by-step process described in the paper, by which digitized growth increments are used to calculate changes in shell height, shell thickness, shell volume, shell mass and shell growth rate through the bivalve's life time. Then, results of this growth modelling are combined with the trace element mapping results to trace the incorporation of trace elements into the bivalve shell. Results of various modelling parameters can be exported in the form of XLSX files.
This package provides functions to estimate the density and size of a spatially distributed animal population sampled with an array of passive detectors, such as traps, or by searching polygons or transects. Models incorporating distance-dependent detection are fitted by maximizing the likelihood. Tools are included for data manipulation and model selection.
This package provides functions and data sets inspired by data sharpening - data perturbation to achieve improved performance in nonparametric estimation, as described in Choi, E., Hall, P. and Rousson, V. (2000). Capabilities for enhanced local linear regression function and derivative estimation are included, as well as an asymptotically correct iterated data sharpening estimator for any degree of local polynomial regression estimation. A cross-validation-based bandwidth selector is included which, in concert with the iterated sharpener, will often provide superior performance, according to a median integrated squared error criterion. Sample data sets are provided to illustrate function usage.
This package provides a general spatiotemporal satellite image imputation method based on sparse functional data analytic techniques. The imputation method applies and extends the Functional Principal Analysis by Conditional Estimation (PACE). The underlying idea for the proposed procedure is to impute a missing pixel by borrowing information from temporally and spatially contiguous pixels based on the best linear unbiased prediction.
Takea Semantic Structure Analysis (TSSA) and Sakai Sequential Relation Analysis (SSRA) for polytomous items. Package includes functions for generating a sequential relation table and a treegram to visualize the sequential relations between pairs of items.
This package implements a Bayesian hierarchical model designed to identify skips in mobile menstrual cycle self-tracking on mobile apps. Future developments will allow for the inclusion of covariates affecting cycle mean and regularity, as well as extra information regarding tracking non-adherence. Main methods to be outlined in a forthcoming paper, with alternative models from Li et al. (2022) <doi:10.1093/jamia/ocab182>.
Handles datetimes as integers for the usage inside Discrete-Event Simulations (DES). The conversion is made using the internally generic function as.numeric() of the base package. DES is described in Simulation Modeling and Analysis by Averill Law and David Kelton (1999) <doi:10.2307/2288169>.