Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package creates complex heatmaps for single cell RNA-seq data that simultaneously display gene expression levels (as color intensity) and expression percentages (as circle sizes). Supports gene grouping, cell type annotations, and time point comparisons. Built on top of ComplexHeatmap and integrates with Seurat objects. For more details see Gu (2022) <doi:10.1002/imt2.43> and Hao (2024) <doi:10.1038/s41587-023-01767-y>.
Toolbox for different kinds of spatio-temporal analyses to be performed on observed point patterns, following the growing stream of literature on point process theory. This R package implements functions to perform different kinds of analyses on point processes, proposed in the papers (Siino, Adelfio, and Mateu 2018<doi:10.1007/s00477-018-1579-0>; Siino et al. 2018<doi:10.1002/env.2463>; Adelfio et al. 2020<doi:10.1007/s00477-019-01748-1>; Dâ Angelo, Adelfio, and Mateu 2021<doi:10.1016/j.spasta.2021.100534>; Dâ Angelo, Adelfio, and Mateu 2022<doi:10.1007/s00362-022-01338-4>; Dâ Angelo, Adelfio, and Mateu 2023<doi:10.1016/j.csda.2022.107679>). The main topics include modeling, statistical inference, and simulation issues on spatio-temporal point processes on Euclidean space and linear networks. Version 1.0.0 has been updated for accompanying the journal publication D Angelo and Adelfio 2025 <doi:10.18637/jss.v113.i10>.
This package provides functions for computing a standardized moderation effect in moderated regression and forming its confidence interval by nonparametric bootstrapping as proposed in Cheung, Cheung, Lau, Hui, and Vong (2022) <doi:10.1037/hea0001188>. Also includes simple-to-use functions for computing conditional effects (unstandardized or standardized) and plotting moderation effects.
Select the most suitable shape to describe the relationship between the exposure and the outcome among increasing, decreasing, convex, and concave shapes (Yin et al. (2021) <DOI:10.1007/s13571-020-00246-7>); estimate the direct and indirect effects with prior knowledge on the relationship between the mediator and the outcome with binary exposure (Yin et al. (2024) <DOI:10.1007/s13571-024-00336-w>); estimate the direct and indirect effects using linear regression-based approach (VanderWeele (2015, ISBN:9780199325870)).
Potential randomization schemes are prospectively evaluated when units are assigned to treatment arms upon entry into the experiment. The schemes are evaluated for balance on covariates and on predictability (i.e., how well could a site worker guess the treatment of the next unit enrolled).
This package implements the structural forest methodology for the heterogeneous newsvendor model. The package provides tools to prepare data, fit honest newsvendor trees and forests, and obtain point and distributional predictions for demand decisions under uncertainty.
This package provides a powerful, easy to use syntax for specifying and estimating complex Structural Equation Models. Models can be estimated using Partial Least Squares Path Modeling or Covariance-Based Structural Equation Modeling or covariance based Confirmatory Factor Analysis (Ray, Danks, and Valdez 2021 <doi:10.2139/ssrn.3900621>).
This package implements multi-study learning algorithms such as merging, the study-specific ensemble (trained-on-observed-studies ensemble) the study strap, the covariate-matched study strap, covariate-profile similarity weighting, and stacking weights. Embedded within the caret framework, this package allows for a wide range of single-study learners (e.g., neural networks, lasso, random forests). The package offers over 20 default similarity measures and allows for specification of custom similarity measures for covariate-profile similarity weighting and an accept/reject step. This implements methods described in Loewinger, Kishida, Patil, and Parmigiani. (2019) <doi:10.1101/856385>.
There is variation across AgNPs due to differences in characterization techniques and testing metrics employed in studies. To address this problem, we have developed a systematic evaluation framework called sysAgNPs'. Within this framework, Distribution Entropy (DE) is utilized to measure the uncertainty of feature categories of AgNPs, Proclivity Entropy (PE) assesses the preference of these categories, and Combination Entropy (CE) quantifies the uncertainty of feature combinations of AgNPs. Additionally, a Markov chain model is employed to examine the relationships among the sub-features of AgNPs and to determine a Transition Score (TS) scoring standard that is based on steady-state probabilities. The sysAgNPs framework provides metrics for evaluating AgNPs, which helps to unravel their complexity and facilitates effective comparisons among different AgNPs, thereby advancing the scientific research and application of these AgNPs.
Routine that allows the user to run several goodness-of-fit tests. It also combines the tests and returns a properly adjusted family-wise p value. Details can be found in <arXiv:2007.04727>.
Computes the Akaike information criterion for the generalized linear models (logistic regression, Poisson regression, and Gaussian graphical models) estimated by the lasso.
This package provides a major challenge in estimating treatment decision rules from a randomized clinical trial dataset with covariates measured at baseline lies in detecting relatively small treatment effect modification-related variability (i.e., the treatment-by-covariates interaction effects on treatment outcomes) against a relatively large non-treatment-related variability (i.e., the main effects of covariates on treatment outcomes). The class of Single-Index Models with Multiple-Links is a novel single-index model specifically designed to estimate a single-index (a linear combination) of the covariates associated with the treatment effect modification-related variability, while allowing a nonlinear association with the treatment outcomes via flexible link functions. The models provide a flexible regression approach to developing treatment decision rules based on patients data measured at baseline. We refer to Park, Petkova, Tarpey, and Ogden (2020) <doi:10.1016/j.jspi.2019.05.008> and Park, Petkova, Tarpey, and Ogden (2020) <doi:10.1111/biom.13320> (that allows an unspecified X main effect) for detail of the method. The main function of this package is simml().
Speeds up the process of loading raw data from MBA (Multiplex Bead Assay) examinations, performs quality control checks, and automatically normalises the data, preparing it for more advanced, downstream tasks. The main objective of the package is to create a simple environment for a user, who does not necessarily have experience with R language. The package is developed within the project PvSTATEM', which is an international project aiming for malaria elimination.
Companion package that supports the surveydown survey platform (<https://surveydown.org>). The default method for working with a surveydown survey is to edit the plain text survey.qmd and app.R files. With sdstudio', you can create, preview and manage surveys with a shiny application as a graphical user interface.
User tools for working with The STOICH (Stoichiometric Traits of Organisms in their Chemical Habitats) Project database <https://snr-stoich.unl.edu/>. This package is designed to aid in data discovery, filtering, pairing water samples with organism samples, and merging data tables to assist users in preparing data for analyses. For additional examples see "Additional Examples" and the readme file at <https://github.com/STOICH-project/STOICH-utilities>.
Perform a Bayesian estimation of the exploratory Sparse Latent Class Model for Binary Data described by Chen, Y., Culpepper, S. A., and Liang, F. (2020) <doi:10.1007/s11336-019-09693-2>.
Efficient procedures for fitting and cross-validating the structurally-regularized time-dependent Cox models.
Visualize and tabulate single-choice, multiple-choice, matrix-style questions from survey data. Includes ability to group cross-tabulations, frequency distributions, and plots by categorical variables and to integrate survey weights. Ideal for quickly uncovering descriptive patterns in survey data.
Highest posterior model is widely accepted as a good model among available models. In terms of variable selection highest posterior model is often the true model. Our stochastic search process SAHPM based on simulated annealing maximization method tries to find the highest posterior model by maximizing the model space with respect to the posterior probabilities of the models. This package currently contains the SAHPM method only for linear models. The codes for GLM will be added in future.
Implementation of Stepwise Clustered Ensemble (SCE) and Stepwise Cluster Analysis (SCA) for multivariate data analysis. The package provides comprehensive tools for feature selection, model training, prediction, and evaluation in hydrological and environmental modeling applications. Key functionalities include recursive feature elimination (RFE), Wilks feature importance analysis, model validation through out-of-bag (OOB) validation, and ensemble prediction capabilities. The package supports both single and multivariate response variables, making it suitable for complex environmental modeling scenarios. For more details see Li et al. (2021) <doi:10.5194/hess-25-4947-2021>.
An implementation of a phylogenetic comparative method. It can fit univariate among-species Ornstein-Uhlenbeck models of phenotypic trait evolution, where the trait evolves towards a primary optimum. The optimum can be modelled as a single parameter, as multiple discrete regimes on the phylogenetic tree, and/or with continuous covariates. See also Hansen (1997) <doi:10.2307/2411186>, Butler & King (2004) <doi:10.1086/426002>, Hansen et al. (2008) <doi:10.1111/j.1558-5646.2008.00412.x>.
This is a modification of HDoutliers package. The HDoutliers algorithm is a powerful unsupervised algorithm for detecting anomalies in high-dimensional data, with a strong theoretical foundation. However, it suffers from some limitations that significantly hinder its performance level, under certain circumstances. This package implements the algorithm proposed in Talagala, Hyndman and Smith-Miles (2019) <arXiv:1908.04000> for detecting anomalies in high-dimensional data that addresses these limitations of HDoutliers algorithm. We define an anomaly as an observation that deviates markedly from the majority with a large distance gap. An approach based on extreme value theory is used for the anomalous threshold calculation.
Implementations of classical and machine learning models for survival analysis, including deep neural networks via keras and tensorflow'. Each model includes a separated fit and predict interface with consistent prediction types for predicting risk or survival probabilities. Models are either implemented from Python via reticulate <https://CRAN.R-project.org/package=reticulate>, from code in GitHub packages, or novel implementations using Rcpp <https://CRAN.R-project.org/package=Rcpp>. Neural networks are implemented from the Python package pycox <https://github.com/havakv/pycox>.
Shapley Value Regression for calculating the relative importance of independent variables in linear regression with avoiding the collinearity.